Michael A Barry

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6495808/publications.pdf

Version: 2024-02-01

105 papers 6,233 citations

38 h-index 69250 77 g-index

109 all docs

 $\begin{array}{c} 109 \\ \\ \text{docs citations} \end{array}$

109 times ranked 5842 citing authors

#	Article	IF	CITATIONS
1	Modulating Oncolytic Adenovirus Immunotherapy by Driving Two Axes of the Immune System by Expressing 4-1BBL and CD40L. Human Gene Therapy, 2022, 33, 250-261.	2.7	5
2	<i>Ex Vivo</i> and <i>In Vivo</i> CD46 Receptor Utilization by Species D Human Adenovirus Serotype 26 (HAdV26). Journal of Virology, 2022, 96, JVI0082621.	3.4	9
3	Refined Capsid Structure of Human Adenovirus D26 at 3.4 Ã Resolution. Viruses, 2022, 14, 414.	3.3	1
4	Mucoadhesive wafers composed of binary polymer blends for sublingual delivery and preservation of protein vaccines. Journal of Controlled Release, 2021, 330, 427-437.	9.9	10
5	Suppression-Replacement <i>KCNQ1</i> Gene Therapy for Type 1 Long QT Syndrome. Circulation, 2021, 143, 1411-1425.	1.6	39
6	Unlocking loxP to Track Genome Editing In Vivo. Genes, 2021, 12, 1204.	2.4	1
7	Structural Organization and Protein-Protein Interactions in Human Adenovirus Capsid. Sub-Cellular Biochemistry, 2021, 96, 503-518.	2.4	10
8	Metabolic perturbations mediated by propionyl-CoA accumulation in organs of mouse model of propionic acidemia. Molecular Genetics and Metabolism, 2021, 134, 257-266.	1.1	10
9	A Replicating Single-Cycle Adenovirus Vaccine Effective against Clostridium difficile. Vaccines, 2020, 8, 470.	4.4	5
10	IRE1A Stimulates Hepatocyte-Derived Extracellular Vesicles That Promote Inflammation in Mice With Steatohepatitis. Gastroenterology, 2020, 159, 1487-1503.e17.	1.3	105
11	Retargeting adenoviruses for therapeutic applications and vaccines. FEBS Letters, 2020, 594, 1918-1946.	2.8	27
12	Genetic Adjuvants in Replicating Single-Cycle Adenovirus Vectors Amplify Systemic and Mucosal Immune Responses against HIV-1 Envelope. Vaccines, 2020, 8, 64.	4.4	11
13	Improving Molecular Therapy in the Kidney. Molecular Diagnosis and Therapy, 2020, 24, 375-396.	3.8	18
14	Recent advances towards gene therapy for propionic acidemia: translation to the clinic. Expert Review of Precision Medicine and Drug Development, 2019, 4, 229-237.	0.7	0
15	Comparison of Gene Delivery to the Kidney by Adenovirus, Adeno-Associated Virus, and Lentiviral Vectors After Intravenous and Direct Kidney Injections. Human Gene Therapy, 2019, 30, 1559-1571.	2.7	47
16	Divergent HIV-1-Directed Immune Responses Generated by Systemic and Mucosal Immunization with Replicating Single-Cycle Adenoviruses in Rhesus Macaques. Journal of Virology, 2019, 93, .	3.4	11
17	Breaking tolerance with engineered class I antigen-presenting molecules. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 3136-3145.	7.1	5
18	Structure-based assessment of protein-protein interactions and accessibility of protein IX in adenoviruses with implications for antigen display. Virology, 2018, 516, 102-107.	2.4	13

#	Article	IF	CITATIONS
19	Single-cycle adenovirus vectors in the current vaccine landscape. Expert Review of Vaccines, 2018, 17, 1-11.	4.4	25
20	Retargeted and detargeted adenovirus for gene delivery to the muscle. Virology, 2018, 514, 118-123.	2.4	10
21	Oncolytic adenovirus Ad657 for systemic virotherapy against prostate cancer. Oncolytic Virotherapy, 2018, Volume 7, 43-51.	6.0	14
22	A Replicating Single-Cycle Adenovirus Vaccine Against Ebola Virus. Journal of Infectious Diseases, 2018, 218, 1883-1889.	4.0	14
23	Precision gene editing technology andÂapplications in nephrology. Nature Reviews Nephrology, 2018, 14, 663-677.	9.6	38
24	Comparison of systemic and mucosal immunization with replicating Single cycle Adenoviruses. Global Vaccines and Immunology, 2018, 3, .	0.2	8
25	Cryo-EM structure of human adenovirus D26 reveals the conservation of structural organization among human adenoviruses. Science Advances, 2017, 3, e1602670.	10.3	64
26	Dysregulated miRNAs and their pathogenic implications for the neurometabolic disease propionic acidemia. Scientific Reports, 2017, 7, 5727.	3.3	16
27	Replicating Single-Cycle Adenovirus Vectors Generate Amplified Influenza Vaccine Responses. Journal of Virology, 2017, 91, .	3.4	36
28	Comparison of Liver Detargeting Strategies for Systemic Therapy with Oncolytic Adenovirus Serotype 5. Biomedicines, 2017, 5, 46.	3.2	5
29	Minimally invasive monitoring of CD4 T cells at multiple mucosal tissues after intranasal vaccination in rhesus macaques. PLoS ONE, 2017, 12, e0188807.	2.5	3
30	Transgene Expression and Host Cell Responses to Replication-Defective, Single-Cycle, and Replication-Competent Adenovirus Vectors. Genes, 2017, 8, 79.	2.4	19
31	Adenoviral Vector Targeting via Mitigation of Liver Sequestration. , 2016, , 293-317.		0
32	Evaluation of polymer shielding for adenovirus serotype 6 (Ad6) for systemic virotherapy against human prostate cancers. Molecular Therapy - Oncolytics, 2016, 3, 15021.	4.4	19
33	Treatment of osteoarthritis using a helper-dependent adenoviral vector retargeted to chondrocytes. Molecular Therapy - Methods and Clinical Development, 2016, 3, 16008.	4.1	23
34	Infectious SIV resides in adipose tissue and induces metabolic defects in chronically infected rhesus macaques. Retrovirology, 2016, 13, 30.	2.0	46
35	A novel codon-optimized SIV gag-pol immunogen for gene-based vaccination. Virology Reports, 2015, 5, 47-55.	0.4	1
36	Long-Term Sex-Biased Correction of Circulating Propionic Acidemia Disease Markers by Adeno-Associated Virus Vectors. Human Gene Therapy, 2015, 26, 153-160.	2.7	35

#	Article	IF	CITATIONS
37	Mucosal vaccination by adenoviruses displaying reovirus sigma 1. Virology, 2015, 482, 60-66.	2.4	7
38	Comparison of the Life Cycles of Genetically Distant Species C and Species D Human Adenoviruses Ad6 and Ad26 in Human Cells. Journal of Virology, 2015, 89, 12401-12417.	3.4	8
39	Amplified and Persistent Immune Responses Generated by Single-Cycle Replicating Adenovirus Vaccines. Journal of Virology, 2015, 89, 669-675.	3.4	37
40	Enhancement of Mucosal Immunogenicity of Viral Vectored Vaccines by the NKT Cell Agonist Alpha-Galactosylceramide as Adjuvant. Vaccines, 2014, 2, 686-706.	4.4	20
41	Effects of Adeno-Associated Virus Serotype and Tissue-Specific Expression on Circulating Biomarkers of Propionic Acidemia. Human Gene Therapy, 2014, 25, 837-843.	2.7	13
42	Natural killer T cell and TLR9 agonists as mucosal adjuvants for sublingual vaccination with clade C HIV-1 envelope protein. Vaccine, 2014, 32, 6934-6940.	3.8	23
43	Illa deleted adenovirus as a single-cycle genome replicating vector. Virology, 2014, 462-463, 158-165.	2.4	35
44	CD46-Mediated Transduction of a Species D Adenovirus Vaccine Improves Mucosal Vaccine Efficacy. Human Gene Therapy, 2014, 25, 364-374.	2.7	13
45	Circulating Antibodies and Macrophages as Modulators of Adenovirus Pharmacology. Journal of Virology, 2013, 87, 3678-3686.	3.4	49
46	Generation of a Hypomorphic Model of Propionic Acidemia Amenable to Gene Therapy Testing. Molecular Therapy, 2013, 21, 1316-1323.	8.2	46
47	Comparison of Systemic and Mucosal Immunization with Helper-Dependent Adenoviruses for Vaccination against Mucosal Challenge with SHIV. PLoS ONE, 2013, 8, e67574.	2.5	22
48	Low Seroprevalent Species D Adenovirus Vectors as Influenza Vaccines. PLoS ONE, 2013, 8, e73313.	2.5	44
49	Mining the Adenovirus "Virome" for Systemic Oncolytics. Current Pharmaceutical Biotechnology, 2012, 13, 1804-1808.	1.6	12
50	A Vector–Host System to Fingerprint Virus Tropism. Human Gene Therapy, 2012, 23, 1116-1126.	2.7	12
51	Identification of Adenovirus Serotype 5 Hexon Regions That Interact with Scavenger Receptors. Journal of Virology, 2012, 86, 2293-2301.	3.4	69
52	Lentiviral vectors: basic to translational. Biochemical Journal, 2012, 443, 603-618.	3.7	258
53	Response to Adhikary et al Virology, 2012, 424, 2.	2.4	3
54	Imaging Luciferase-Expressing Viruses. Methods in Molecular Biology, 2012, 797, 79-87.	0.9	6

#	Article	IF	Citations
55	Protection against Divergent Influenza H1N1 Virus by a Centralized Influenza Hemagglutinin. PLoS ONE, 2011, 6, e18314.	2.5	51
56	Advances and Future Challenges in Adenoviral Vector Pharmacology and Targeting. Current Gene Therapy, 2011, 11, 241-258.	2.0	131
57	Characterization of species C human adenovirus serotype 6 (Ad6). Virology, 2011, 412, 19-27.	2.4	32
58	Generation of a Kupffer Cell-evading Adenovirus for Systemic and Liver-directed Gene Transfer. Molecular Therapy, 2011, 19, 1254-1262.	8.2	77
59	Adeno-Associated Virus Serotype 8 Gene Transfer Rescues a Neonatal Lethal Murine Model of Propionic Acidemia. Human Gene Therapy, 2011, 22, 477-481.	2.7	39
60	Species D Adenoviruses as Oncolytics against B-cell Cancers. Clinical Cancer Research, 2011, 17, 6712-6722.	7.0	39
61	Comparison of Adenoviruses as Oncolytics and Cancer Vaccines in an Immunocompetent B Cell Lymphoma Model. Human Gene Therapy, 2011, 22, 1095-1100.	2.7	11
62	Real-Time Dynamic Imaging of Virus Distribution In Vivo. PLoS ONE, 2011, 6, e17076.	2.5	18
63	Infection and Killing of Multiple Myeloma by Adenoviruses. Human Gene Therapy, 2010, 21, 179-190.	2.7	44
64	Targeting Adenoviruses with Factor X–Single-Chain Antibody Fusion Proteins. Human Gene Therapy, 2010, 21, 739-749.	2.7	26
65	Short-Term Rescue of Neonatal Lethality in a Mouse Model of Propionic Acidemia by Gene Therapy. Human Gene Therapy, 2009, 20, 169-180.	2.7	33
66	Chemical Modification with High Molecular Weight Polyethylene Glycol Reduces Transduction of Hepatocytes and Increases Efficacy of Intravenously Delivered Oncolytic Adenovirus. Human Gene Therapy, 2009, 20, 975-988.	2.7	101
67	Expanded Anticancer Therapeutic Window of Hexon-modified Oncolytic Adenovirus. Molecular Therapy, 2009, 17, 2121-2130.	8.2	35
68	Protection against Mucosal SHIV Challenge by Peptide and Helper-Dependent Adenovirus Vaccines. Viruses, 2009, 1, 920-938.	3.3	26
69	Adenovirus Activates Complement by Distinctly Different Mechanisms In Vitro and In Vivo: Indirect Complement Activation by Virions In Vivo. Journal of Virology, 2009, 83, 5648-5658.	3.4	72
70	Characterization of human adenovirus serotypes 5, 6, 11, and 35 as anticancer agents. Virology, 2009, 394, 311-320.	2.4	61
71	Comparison of Replication-Competent, First Generation, and Helper-Dependent Adenoviral Vaccines. PLoS ONE, 2009, 4, e5059.	2.5	61
72	Systemic delivery of therapeutic viruses. Current Opinion in Molecular Therapeutics, 2009, 11, 411-20.	2.8	14

#	Article	IF	Citations
73	Reprogrammed viruses as cancer therapeutics: targeted, armed and shielded. Nature Reviews Microbiology, 2008, 6, 529-540.	28.6	342
74	Macrophage Depletion Combined with Anticoagulant Therapy Increases Therapeutic Window of Systemic Treatment with Oncolytic Adenovirus. Cancer Research, 2008, 68, 5896-5904.	0.9	86
75	Effects of Shielding Adenoviral Vectors with Polyethylene Glycol on Vector-Specific and Vaccine-Mediated Immune Responses. Human Gene Therapy, 2008, 19, 1369-1382.	2.7	50
76	Modification of Adenoviral Vectors With Polyethylene Glycol Modulates In Vivo Tissue Tropism and Gene Expression. Molecular Therapy, 2008, 16, 1276-1282.	8.2	95
77	Short-term Rescue of Neonatal Lethality in a Mouse Model of Propionic Acidemia by Gene Therapy. Human Gene Therapy, 2008, .	2.7	2
78	Current Advances and Future Challenges in Adenoviral Vector Biology and Targeting. Current Gene Therapy, 2007, 7, 189-204.	2.0	174
79	Polyethylene Glycol Modification of Adenovirus Reduces Platelet Activation, Endothelial Cell Activation, and Thrombocytopenia. Human Gene Therapy, 2007, 18, 837-848.	2.7	72
80	Comparison of visible and near-infrared wavelength-excitable fluorescent dyes for molecular imaging of cancer. Journal of Biomedical Optics, 2007, 12, 024017.	2.6	193
81	Oral immunization of rhesus macaques with adenoviral HIV vaccines using enteric-coated capsules. Vaccine, 2007, 25, 8687-8701.	3.8	52
82	Comparison of adenovirus fiber, protein IX, and hexon capsomeres as scaffolds for vector purification and cell targeting. Virology, 2006, 349, 453-462.	2.4	67
83	Increased Transduction of Skeletal Muscle Cells by Fibroblast Growth Factor-Modified Adenoviral Vectors. Human Gene Therapy, 2006, 17, 314-320.	2.7	20
84	Cryoelectron Microscopy of Protein IX-Modified Adenoviruses Suggests a New Position for the C Terminus of Protein IX. Journal of Virology, 2006, 80, 11881-11886.	3.4	33
85	Evaluation of polyethylene glycol modification of first-generation and helper-dependent adenoviral vectors to reduce innate immune responses. Molecular Therapy, 2005, 11 , 66-79.	8.2	225
86	Selection of Muscle-Binding Peptides from Context-Specific Peptide-Presenting Phage Libraries for Adenoviral Vector Targeting. Journal of Virology, 2005, 79, 13667-13672.	3.4	27
87	A chimeric adenovirus vector encoding reovirus attachment protein $\hat{A}1$ targets cells expressing junctional adhesion molecule 1. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101, 6188-6193.	7.1	79
88	Avidin-based targeting and purification of a protein IX-modified, metabolically biotinylated adenoviral vector. Molecular Therapy, 2004, 9, 942-954.	8.2	87
89	Expression library immunization to discover and improve vaccine antigens. Immunological Reviews, 2004, 199, 68-83.	6.0	30
90	Development and characterization of enhanced green fluorescent protein and luciferase expressing cell line for non-destructive evaluation of tissue engineering constructs. Biomaterials, 2004, 25, 5809-5819.	11.4	33

#	Article	IF	CITATIONS
91	Rapid Construction of Capsid-Modified Adenoviral Vectors Through Bacteriophage λ Red Recombination. Human Gene Therapy, 2004, 15, 1125-1130.	2.7	34
92	Metabolically biotinylated adenovirus for cell targeting, ligand screening, and vector purification. Molecular Therapy, 2003, 8, 688-700.	8.2	104
93	Biotinylated gene therapy vectors. Expert Opinion on Biological Therapy, 2003, 3, 925-940.	3.1	22
94	Selection of Peptides on Phage., 2003,, 547-579.		3
95	Selection of chronic lymphocytic leukemia binding peptides. Cancer Research, 2003, 63, 5213-7.	0.9	20
96	Metabolic Biotinylation of Secreted and Cell Surface Proteins from Mammalian Cells. Biochemical and Biophysical Research Communications, 2001, 281, 993-1000.	2.1	72
97	An optimized method for the chemiluminescent detection of alkaline phosphatase levels during osteodifferentiation by bone morphogenetic protein 2. Journal of Cellular Biochemistry, 2001, 80, 532-537.	2.6	60
98	An optimized method for the chemiluminescent detection of alkaline phosphatase levels during osteodifferentiation by bone morphogenetic protein 2., 2001, 80, 532.		2
99	Poly(ethylenimine)-mediated transfection: A new paradigm for gene delivery. Journal of Biomedical Materials Research Part B, 2000, 51, 321-328.	3.1	293
100	Metabolic Biotinylation of Recombinant Proteins in Mammalian Cells and in Mice. Molecular Therapy, 2000, 1, 96-104.	8.2	59
101	Poly(ethylenimine)â€mediated transfection: A new paradigm for gene delivery. Journal of Biomedical Materials Research Part B, 2000, 51, 321-328.	3.1	5
102	Semaphorin III can repulse and inhibit adult sensory afferents in vivo. Nature Medicine, 1997, 3, 1398-1401.	30.7	135
103	Toward cell–targeting gene therapy vectors: Selection of cell–binding peptides from random peptide–presenting phage libraries. Nature Medicine, 1996, 2, 299-305.	30.7	343
104	Protection against mycoplasma infection using expression-library immunization. Nature, 1995, 377, 632-635.	27.8	313
105	Activation of programmed cell death (apoptosis) by cisplatin, other anticancer drugs, toxins and hyperthermia. Biochemical Pharmacology, 1990, 40, 2353-2362.	4.4	845