List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6495019/publications.pdf Version: 2024-02-01

Μλατλ Αςμοο

#	Article	IF	CITATIONS
1	Intraocular implants loaded with A3R agonist rescue retinal ganglion cells from ischemic damage. Journal of Controlled Release, 2022, 343, 469-481.	9.9	8
2	Ly6c as a New Marker of Mouse Blood Vessels: Qualitative and Quantitative Analyses on Intact and Ischemic Retinas. International Journal of Molecular Sciences, 2022, 23, 19.	4.1	3
3	Intravitreal fluorogold tracing as a method to label retinal neurons and the retinal pigment epithelium. Neural Regeneration Research, 2021, 16, 2000.	3.0	2
4	Axonal Injuries Cast Long Shadows: Long Term Glial Activation in Injured and Contralateral Retinas after Unilateral Axotomy. International Journal of Molecular Sciences, 2021, 22, 8517.	4.1	13
5	Mechanisms implicated in the contralateral effect in the central nervous system after unilateral injury: focus on the visual system. Neural Regeneration Research, 2021, 16, 2125.	3.0	15
6	Neuroprotection and Axonal Regeneration Induced by Bone Marrow Mesenchymal Stromal Cells Depend on the Type of Transplant. Frontiers in Cell and Developmental Biology, 2021, 9, 772223.	3.7	9
7	Activation of adenosine A3 receptor protects retinal ganglion cells from degeneration induced by ocular hypertension. Cell Death and Disease, 2020, 11, 401.	6.3	15
8	Tracing the retina to analyze the integrity and phagocytic capacity of the retinal pigment epithelium. Scientific Reports, 2020, 10, 7273.	3.3	12
9	Coordinated Intervention of Microglial and Müller Cells in Light-Induced Retinal Degeneration. , 2020, 61, 47.		30
10	Systemic and Intravitreal Antagonism of the TNFR1 Signaling Pathway Delays Axotomy-Induced Retinal Ganglion Cell Loss. Frontiers in Neuroscience, 2019, 13, 1096.	2.8	18
11	β-alanine supplementation induces taurine depletion and causes alterations of the retinal nerve fiber layer and axonal transport by retinal ganglion cells. Experimental Eye Research, 2019, 188, 107781.	2.6	21
12	Topical bromfenac transiently delays axotomy-induced retinal ganglion cell loss. Experimental Eye Research, 2019, 182, 156-159.	2.6	2
13	Neuronal Death in the Contralateral Un-Injured Retina after Unilateral Axotomy: Role of Microglial Cells. International Journal of Molecular Sciences, 2019, 20, 5733.	4.1	26
14	Porous poly(ε-caprolactone) implants: A novel strategy for efficient intraocular drug delivery. Journal of Controlled Release, 2019, 316, 331-348.	9.9	50
15	Cranial Pair II: The Optic Nerves. Anatomical Record, 2019, 302, 428-445.	1.4	8
16	Role of microglial cells in photoreceptor degeneration. Neural Regeneration Research, 2019, 14, 1186.	3.0	29
17	Mesenchymal stromal cell therapy for damaged retinal ganglion cells, is gold all that glitters?. Neural Regeneration Research, 2019, 14, 1851.	3.0	12
18	Nerve fibre layer degeneration and retinal ganglion cell loss long term after optic nerve crush or transection in adult mice. Experimental Eye Research, 2018, 170, 40-50.	2.6	46

#	Article	IF	CITATIONS
19	The aging rat retina: from function to anatomy. Neurobiology of Aging, 2018, 61, 146-168.	3.1	80
20	Human Wharton's jelly mesenchymal stem cells protect axotomized rat retinal ganglion cells via secretion of anti-inflammatory and neurotrophic factors. Scientific Reports, 2018, 8, 16299.	3.3	50
21	Taurine Depletion Causes ipRGC Loss and Increases Light-Induced Photoreceptor Degeneration. , 2018, 59, 1396.		32
22	Neuroprotective Effects of FGF2 and Minocycline in Two Animal Models of Inherited Retinal Degeneration. , 2018, 59, 4392.		58
23	Survival of melanopsin expressing retinal ganglion cells long term after optic nerve trauma in mice. Experimental Eye Research, 2018, 174, 93-97.	2.6	23
24	The senescent vision: dysfunction or neuronal loss?. Aging, 2018, 11, 15-17.	3.1	6
25	Retinal remodeling following photoreceptor degeneration causes retinal ganglion cell death. Neural Regeneration Research, 2018, 13, 1885.	3.0	27
26	MicroRNA regulation in an animal model of acute ocular hypertension. Acta Ophthalmologica, 2017, 95, e10-e21.	1.1	28
27	Microglial dynamics after axotomy-induced retinal ganglion cell death. Journal of Neuroinflammation, 2017, 14, 218.	7.2	51
28	Early Events in Retinal Degeneration Caused by Rhodopsin Mutation or Pigment Epithelium Malfunction: Differences and Similarities. Frontiers in Neuroanatomy, 2017, 11, 14.	1.7	51
29	Shared and Differential Retinal Responses against Optic Nerve Injury and Ocular Hypertension. Frontiers in Neuroscience, 2017, 11, 235.	2.8	74
30	Microglia in Health and Disease: A Double-Edged Sword. Mediators of Inflammation, 2017, 2017, 1-2.	3.0	22
31	Light-induced retinal degeneration causes a transient downregulation of melanopsin in the rat retina. Experimental Eye Research, 2017, 161, 10-16.	2.6	27
32	Quantitative and Topographical Analysis of the Losses of Cone Photoreceptors and Retinal Ganglion Cells Under Taurine Depletion. , 2016, 57, 4692.		31
33	Melanopsin-Containing or Non-Melanopsin–Containing Retinal Ganglion Cells Response to Acute Ocular Hypertension With or Without Brain-Derived Neurotrophic Factor Neuroprotection. , 2016, 57, 6652.		34
34	Apoptotic Retinal Ganglion Cell Death After Optic Nerve Transection or Crush in Mice: Delayed RGC Loss With BDNF or a Caspase 3 Inhibitor. , 2016, 57, 81.		113
35	Different Ipsi- and Contralateral Glial Responses to Anti-VEGF and Triamcinolone Intravitreal Injections in Rats. , 2016, 57, 3533.		27
36	Ketorolac Administration Attenuates Retinal Ganglion Cell Death After Axonal Injury. , 2016, 57, 1183.		16

#	Article	IF	CITATIONS
37	Topical Treatment With Bromfenac Reduces Retinal Gliosis and Inflammation After Optic Nerve Crush. , 2016, 57, 6098.		16
38	Involvement of P2X7 receptor in neuronal degeneration triggered by traumatic injury. Scientific Reports, 2016, 6, 38499.	3.3	23
39	Caffeine administration prevents retinal neuroinflammation and loss of retinal ganglion cells in an an animal model of glaucoma. Scientific Reports, 2016, 6, 27532.	3.3	54
40	Neuroprotection by α2-Adrenergic Receptor Stimulation after Excitotoxic Retinal Injury: A Study of the Total Population of Retinal Ganglion Cells and Their Distribution in the Chicken Retina. PLoS ONE, 2016, 11, e0161862.	2.5	8
41	Melanopsin expression is an indicator of the well-being of melanopsin-expressing retinal ganglion cells but not of their viability. Neural Regeneration Research, 2016, 11, 1243.	3.0	13
42	Long-Term Effect of Optic Nerve Axotomy on the Retinal Ganglion Cell Layer. , 2015, 56, 6095.		96
43	Inherited Photoreceptor Degeneration Causes the Death of Melanopsin-Positive Retinal Ganglion Cells and Increases Their Coexpression of Brn3a. , 2015, 56, 4592.		38
44	Comparison of Retinal Nerve Fiber Layer Thinning and Retinal Ganglion Cell Loss After Optic Nerve Transection in Adult Albino Rats. , 2015, 56, 4487.		66
45	Transient Downregulation of Melanopsin Expression After Retrograde Tracing or Optic Nerve Injury in Adult Rats. , 2015, 56, 4309.		25
46	BDNF Rescues RGCs But Not Intrinsically Photosensitive RGCs in Ocular Hypertensive Albino Rat Retinas. , 2015, 56, 1924.		60
47	Laser-induced ocular hypertension in adult rats does not affect non-RGC neurons in the ganglion cell layer but results in protracted severe loss of cone-photoreceptors. Experimental Eye Research, 2015, 132, 17-33.	2.6	50
48	Two methods to trace retinal ganglion cells with fluorogold: From the intact optic nerve or by stereotactic injection into the optic tract. Experimental Eye Research, 2015, 131, 12-19.	2.6	31
49	Retinal neurodegeneration in experimental glaucoma. Progress in Brain Research, 2015, 220, 1-35.	1.4	63
50	Retino-retinal projection in juvenile and young adult rats and mice. Experimental Eye Research, 2015, 134, 47-52.	2.6	21
51	Effects of Ocular Hypertension in the Visual System of Pigmented Mice. PLoS ONE, 2015, 10, e0121134.	2.5	43
52	Identifying specific RGC types may shed light on their idiosyncratic responses to neuroprotection. Neural Regeneration Research, 2015, 10, 1228.	3.0	22
53	Displaced retinal ganglion cells in albino and pigmented rats. Frontiers in Neuroanatomy, 2014, 8, 99.	1.7	76
54	Distribution of melanopsin positive neurons in pigmented and albino mice: evidence for melanopsin interneurons in the mouse retina. Frontiers in Neuroanatomy, 2014, 8, 131.	1.7	61

#	Article	IF	CITATIONS
55	Sectorial loss of retinal ganglion cells in inherited photoreceptor degeneration is due to RGC death. British Journal of Ophthalmology, 2014, 98, 396-401.	3.9	29
56	Temporal response of the phagocytic microglia in the axotomized rat retina: optic nerve crush vs. transection. Acta Ophthalmologica, 2014, 92, 0-0.	1.1	1
57	Number and Distribution of Mouse Retinal Cone Photoreceptors: Differences between an Albino (Swiss) and a Pigmented (C57/BL6) Strain. PLoS ONE, 2014, 9, e102392.	2.5	103
58	Microglial cell reaction after optic nerve lesions. Acta Ophthalmologica, 2014, 92, 0-0.	1.1	0
59	Number and spatial distribution of intrinsically photosensitive retinal ganglion cells in the adult albino rat. Experimental Eye Research, 2013, 108, 84-93.	2.6	70
60	Anatomical and functional damage in experimental glaucoma. Current Opinion in Pharmacology, 2013, 13, 5-11.	3.5	42
61	Metabolomic Changes in the Rat Retina After Optic Nerve Crush. , 2013, 54, 4249.		37
62	Effect of Brain-Derived Neurotrophic Factor on Mouse Axotomized Retinal Ganglion Cells and Phagocytic Microglia. , 2013, 54, 974.		101
63	Changes in the Photoreceptor Mosaic of P23H-1 Rats During Retinal Degeneration: Implications for Rod-Cone Dependent Survival. , 2013, 54, 5888.		61
64	Whole Number, Distribution and Co-Expression of Brn3 Transcription Factors in Retinal Ganglion Cells of Adult Albino and Pigmented Rats. PLoS ONE, 2012, 7, e49830.	2.5	131
65	Understanding glaucomatous damage: Anatomical and functional data from ocular hypertensive rodent retinas. Progress in Retinal and Eye Research, 2012, 31, 1-27.	15.5	167
66	Retinal neuronal death caused by ocular hypertension. Acta Ophthalmologica, 2012, 90, 0-0.	1.1	0
67	Retinal compensatory changes after light damage in albino mice. Molecular Vision, 2012, 18, 675-93.	1.1	33
68	Brain derived neurotrophic factor maintains Brn3a expression in axotomized rat retinal ganglion cells. Experimental Eye Research, 2011, 92, 260-267.	2.6	74
69	Axotomy-induced retinal ganglion cell death in adult mice: Quantitative and topographic time course analyses. Experimental Eye Research, 2011, 92, 377-387.	2.6	136
70	Retinal ganglion cell axonal compression by retinal vessels in light-induced retinal degeneration. Molecular Vision, 2011, 17, 1716-33.	1.1	43
71	A retinoic acid receptor β agonist (CD2019) overcomes inhibition of axonal outgrowth via phosphoinositide 3-kinase signalling in the injured adult spinal cord. Neurobiology of Disease, 2010, 37, 147-155.	4.4	49
72	ERG changes in albino and pigmented mice after optic nerve transection. Vision Research, 2010, 50, 2176-2187.	1.4	54

#	Article	IF	CITATIONS
73	Automated Quantification and Topographical Distribution of the Whole Population of S- and L-Cones in Adult Albino and Pigmented Rats. , 2010, 51, 3171.		71
74	Multiple receptor tyrosine kinases are expressed in adult rat retinal ganglion cells as revealed by single-cell degenerate primer polymerase chain reaction. Upsala Journal of Medical Sciences, 2010, 115, 65-80.	0.9	15
75	Retinal ganglion cell numbers and delayed retinal ganglion cell death in the P23H rat retina. Experimental Eye Research, 2010, 91, 800-810.	2.6	79
76	Time-course of the retinal nerve fibre layer degeneration after complete intra-orbital optic nerve transection or crush: A comparative study. Vision Research, 2009, 49, 2808-2825.	1.4	63
77	Brn3a as a Marker of Retinal Ganglion Cells: Qualitative and Quantitative Time Course Studies in Nail̇̀ ve and Optic Nerve–Injured Retinas. , 2009, 50, 3860.		465
78	Effects of different neurotrophic factors on the survival of retinal ganglion cells after a complete intraorbital nerve crush injury: A quantitative in vivo study. Experimental Eye Research, 2009, 89, 32-41.	2.6	141
79	Sequential RARβ and α signalling in vivo can induce adult forebrain neural progenitor cells to differentiate into neurons through Shh and FGF signalling pathways. Developmental Biology, 2009, 326, 305-313.	2.0	36
80	Immediate Upregulation of Proteins Belonging to Different Branches of the Apoptotic Cascade in the Retina after Optic Nerve Transection and Optic Nerve Crush. , 2009, 50, 424.		76
81	Schwann cell precursors transplanted into the injured spinal cord multiply, integrate and are permissive for axon growth. Glia, 2008, 56, 1263-1270.	4.9	39
82	Time course profiling of the retinal transcriptome after optic nerve transection and optic nerve crush. Molecular Vision, 2008, 14, 1050-63.	1.1	74
83	A clonal cell line from immortalized olfactory ensheathing glia promotes functional recovery in the injured spinal cord. Molecular Therapy, 2006, 13, 598-608.	8.2	49
84	Regulation of neuropilin 1 by spinal cord injury in adult rats. Molecular and Cellular Neurosciences, 2005, 28, 475-484.	2.2	15
85	Genomic and cytological analysis of the Y chromosome of Drosophila melanogaster: telomere-derived sequences at internal regions. Chromosoma, 2004, 113, 295-304.	2.2	25
86	Semaphorin 3C preserves survival and induces neuritogenesis of cerebellar granule neurons in culture. Journal of Neurochemistry, 2004, 87, 879-890.	3.9	34
87	Highly Efficient and Specific Gene Transfer to Purkinje CellsIn VivoUsing a Herpes Simplex Virus I Amplicon. Human Gene Therapy, 2002, 13, 665-674.	2.7	30
88	Characterization of a second member of the subfamily of calcium-binding mitochondrial carriers expressed in human non-excitable tissues. Biochemical Journal, 2000, 345, 725.	3.7	60
89	Polypeptides differentially expressed in imaginal discs define the peroxiredoxin family of genes in Drosophila. FEBS Journal, 2000, 267, 487-497.	0.2	17
90	Long-range analysis of the centromeric region of Drosophila melanogaster chromosome 3. Chromosome Research, 2000, 8, 651-653.	2.2	5

0

#	Article	IF	CITATIONS
91	A dicentric chromosome of Drosophila melanogaster showing alternate centromere inactivation. Chromosoma, 2000, 109, 190-196.	2.2	42
92	Centromeres from telomeres? The centromeric region of the Y chromosome of Drosophila melanogaster contains a tandem array of telomeric HeT-A- and TART-related sequences. Nucleic Acids Research, 1999, 27, 3318-3324.	14.5	62
93	HeT-A telomere-specific retrotransposons in the centric heterochromatin of Drosophila melanogaster chromosome 3. Molecular Genetics and Genomics, 1999, 262, 618-622.	2.4	15
94	The analysis of Circe, an LTR retrotransposon of Drosophila melanogaster, suggests that an insertion of non-LTR retrotransposons into LTR elements can create chimeric retroelements. Molecular Biology and Evolution, 1999, 16, 1341-1346.	8.9	16
95	Isolation and characterization of the cDNA and the gene for eukaryotic translation initiation factor 4G from Drosophila melanogaster. FEBS Journal, 1998, 253, 27-35.	0.2	24

96 Anatomical and Molecular Responses Triggered in the Retina by Axonal Injury. , 0, , .