Gabriel V Markov

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6494925/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Small molecules as products of evolution. Current Biology, 2022, 32, R100-R105.	3.9	6
2	A structural signature motif enlightens the origin and diversification of nuclear receptors. PLoS Genetics, 2021, 17, e1009492.	3.5	8
3	Semi-Quantitative Targeted Gas Chromatography-Mass Spectrometry Profiling Supports a Late Side-Chain Reductase Cycloartenol-to-Cholesterol Biosynthesis Pathway in Brown Algae. Frontiers in Plant Science, 2021, 12, 648426.	3.6	5
4	Different Early Responses of Laminariales to an Endophytic Infection Provide Insights About Kelp Host Specificity. Frontiers in Marine Science, 2021, 8, .	2.5	5
5	Independent Evolution of the MYB Family in Brown Algae. Frontiers in Genetics, 2021, 12, 811993.	2.3	3
6	Biological rhythms in the deep-sea hydrothermal mussel Bathymodiolus azoricus. Nature Communications, 2020, 11, 3454.	12.8	30
7	Metabolic Complementarity Between a Brown Alga and Associated Cultivable Bacteria Provide Indications of Beneficial Interactions. Frontiers in Marine Science, 2020, 7, .	2.5	25
8	Inferring Biochemical Reactions and Metabolite Structures to Understand Metabolic Pathway Drift. IScience, 2020, 23, 100849.	4.1	15
9	The genome of Ectocarpus subulatus – A highly stress-tolerant brown alga. Marine Genomics, 2020, 52, 100740.	1.1	26
10	Genome–Scale Metabolic Networks Shed Light on the Carotenoid Biosynthesis Pathway in the Brown Algae Saccharina japonica and Cladosiphon okamuranus. Antioxidants, 2019, 8, 564.	5.1	19
11	Diversity and evolution of cytochromes P450 in stramenopiles. Planta, 2019, 249, 647-661.	3.2	18
12	Evolution of Hormonal Mechanisms. , 2019, , 16-22.		0
13	qPCR-based relative quantification of the brown algal endophyte Laminarionema elsbetiae in Saccharina latissima: variation and dynamics of host—endophyte interactions. Journal of Applied Phycology, 2018, 30, 2901-2911.	2.8	19
14	Linking Genomic and Metabolomic Natural Variation Uncovers Nematode Pheromone Biosynthesis. Cell Chemical Biology, 2018, 25, 787-796.e12.	5.2	31
15	NR3E receptors in cnidarians: A new family of steroid receptor relatives extends the possible mechanisms for ligand binding. Journal of Steroid Biochemistry and Molecular Biology, 2018, 184, 11-19.	2.5	17
16	Traceability, reproducibility and wiki-exploration for "Ã-la-carte―reconstructions of genome-scale metabolic models. PLoS Computational Biology, 2018, 14, e1006146.	3.2	89
17	Hormonally active phytochemicals from macroalgae: A largely untapped source of ligands to deorphanize nuclear receptors in emerging marine animal models. General and Comparative Endocrinology, 2018, 265, 41-45.	1.8	8
18	Origin of an ancient hormone/receptor couple revealed by resurrection of an ancestral estrogen. Science Advances, 2017, 3, e1601778.	10.3	49

GABRIEL V MARKOV

#	Article	IF	CITATIONS
19	Evolution of Nuclear Receptors and Ligand Signaling. Current Topics in Developmental Biology, 2017, 125, 1-38.	2.2	34
20	The Role of DAF-21/Hsp90 in Mouth-Form Plasticity in Pristionchus pacificus. Molecular Biology and Evolution, 2017, 34, 1644-1653.	8.9	28
21	Herbivore-induced chemical and molecular responses of the kelps Laminaria digitata and Lessonia spicata. PLoS ONE, 2017, 12, e0173315.	2.5	16
22	Draft Genome of the Scarab Beetle <i>Oryctes borbonicus</i> on La Réunion Island. Genome Biology and Evolution, 2016, 8, 2093-2105.	2.5	35
23	Functional Conservation and Divergence ofdaf-22Paralogs inPristionchus pacificusDauer Development. Molecular Biology and Evolution, 2016, 33, 2506-2514.	8.9	34
24	The Nuclear Hormone Receptor NHR-40 Acts Downstream of the Sulfatase EUD-1 as Part of a Developmental Plasticity Switch in Pristionchus. Current Biology, 2016, 26, 2174-2179.	3.9	56
25	Ancient gene duplications have shaped developmental stage-specific expression in Pristionchus pacificus. BMC Evolutionary Biology, 2015, 15, 185.	3.2	36
26	The Same or Not the Same: Lineage-Specific Gene Expansions and Homology Relationships in Multigene Families in Nematodes. Journal of Molecular Evolution, 2015, 80, 18-36.	1.8	23
27	On the Origin and Evolutionary History of NANOG. PLoS ONE, 2014, 9, e85104.	2.5	21
28	Genome and metabolic network of ââ,¬Å"Candidatus Phaeomarinobacter ectocarpiââ,¬Â•Ec32, a new candidate genus of Alphaproteobacteria frequently associated with brown algae. Frontiers in Genetics, 2014, 5, 241.	2.3	43
29	Chondrus crispus – A Present and Historical Model Organism for Red Seaweeds. Advances in Botanical Research, 2014, 71, 53-89.	1.1	37
30	Natural Variation in Dauer Pheromone Production and Sensing Supports Intraspecific Competition in Nematodes. Current Biology, 2014, 24, 1536-1541.	3.9	47
31	Genome structure and metabolic features in the red seaweed <i>Chondrus crispus</i> shed light on evolution of the Archaeplastida. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 5247-5252.	7.1	307
32	The Evolution of Novelty in Conserved Gene Families. International Journal of Evolutionary Biology, 2012, 2012, 1-8.	1.0	5
33	The Ectocarpus Genome and Brown Algal Genomics. Advances in Botanical Research, 2012, 64, 141-184.	1.1	18
34	Ventx Factors Function as Nanog-Like Guardians of Developmental Potential in Xenopus. PLoS ONE, 2012, 7, e36855.	2.5	48
35	Origin and evolution of the ligand-binding ability of nuclear receptors. Molecular and Cellular Endocrinology, 2011, 334, 21-30.	3.2	90
36	In Silico Survey of the Mitochondrial Protein Uptake and Maturation Systems in the Brown Alga Ectocarpus siliculosus. PLoS ONE, 2011, 6, e19540.	2.5	10

GABRIEL V MARKOV

#	Article	IF	CITATION
37	Evolution of Nuclear Retinoic Acid Receptor Alpha (RARÂ) Phosphorylation Sites. Serine Gain Provides Fine-Tuned Regulation. Molecular Biology and Evolution, 2011, 28, 2125-2137.	8.9	23
38	The Ectocarpus genome and the independent evolution of multicellularity in brown algae. Nature, 2010, 465, 617-621.	27.8	774
39	What does Evolution Teach us about Nuclear Receptors?. , 2010, , 15-29.		4
40	Independent elaboration of steroid hormone signaling pathways in metazoans. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 11913-11918.	7.1	163
41	Plastid genomes of two brown algae, Ectocarpus siliculosus and Fucus vesiculosus: further insights on the evolution of red-algal derived plastids. BMC Evolutionary Biology, 2009, 9, 253.	3.2	77
42	The amphioxus genome enlightens the evolution of the thyroid hormone signaling pathway. Development Genes and Evolution, 2008, 218, 667-680.	0.9	59
43	The "street light syndromeâ€, or how protein taxonomy can bias experimental manipulations. BioEssays, 2008, 30, 349-357.	2.5	16
44	Genome sequence of the metazoan plant-parasitic nematode Meloidogyne incognita. Nature Biotechnology, 2008, 26, 909-915.	17.5	1,012
45	The evolution of the ligand/receptor couple: A long road from comparative endocrinology to comparative genomics. Molecular and Cellular Endocrinology, 2008, 293, 5-16.	3.2	43