
Anne Houdusse-Juillé

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6494577/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	The actomyosin interface contains an evolutionary conserved core and an ancillary interface involved in specificity. Nature Communications, 2021, 12, 1892.	12.8	23
2	Metastasis-suppressor NME1 controls the invasive switch of breast cancer by regulating MT1-MMP surface clearance. Oncogene, 2021, 40, 4019-4032.	5.9	19
3	The many roles of myosins in filopodia, microvilli andÂstereocilia. Current Biology, 2021, 31, R586-R602.	3.9	41
4	VASP-mediated actin dynamics activate and recruit a filopodia myosin. ELife, 2021, 10, .	6.0	11
5	Kinesin-6 Klp9 orchestrates spindle elongation by regulating microtubule sliding and growth. ELife, 2021, 10, .	6.0	9
6	High-resolution structures of the actomyosin-V complex in three nucleotide states provide insights into the force generation mechanism. ELife, 2021, 10, .	6.0	27
7	Force Generation by Myosin Motors: A Structural Perspective. Chemical Reviews, 2020, 120, 5-35.	47.7	91
8	Single Residue Variation in Skeletal Muscle Myosin Enables Direct and Selective Drug Targeting for Spasticity and Muscle Stiffness. Cell, 2020, 183, 335-346.e13.	28.9	21
9	Biological nanomotors, driving forces of life. Comptes Rendus - Biologies, 2020, 343, 53-78.	0.2	2
10	Myosin Structures. Advances in Experimental Medicine and Biology, 2020, 1239, 7-19.	1.6	26
11	Full-length Plasmodium falciparum myosin A and essential light chain PfELC structures provide new anti-malarial targets. ELife, 2020, 9, .	6.0	19
12	Plasmodium myosin A drives parasite invasion by an atypical force generating mechanism. Nature Communications, 2019, 10, 3286.	12.8	49
13	Optimized filopodia formation requires myosin tail domain cooperation. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 22196-22204.	7.1	13
14	<i>MYO5B</i> , <i>STX3</i> , and <i>STXBP2</i> mutations reveal a common disease mechanism that unifies a subset of congenital diarrheal disorders: A mutation update. Human Mutation, 2018, 39, 333-344.	2.5	48
15	Rab GTPases and their interacting protein partners: Structural insights into Rab functional diversity. Small GTPases, 2018, 9, 22-48.	1.6	122
16	Hypertrophic cardiomyopathy disease results from disparate impairments of cardiac myosin function and auto-inhibition. Nature Communications, 2018, 9, 4019.	12.8	91
17	An intermediate along the recovery stroke of myosin VI revealed by X-ray crystallography and molecular dynamics. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, 6213-6218.	7.1	22
18	Circularly Permuted Fluorogenic Proteins for the Design of Modular Biosensors. ACS Chemical Biology, 2018, 13, 2392-2397.	3.4	27

Anne Houdusse-Juillã©

#	Article	IF	CITATIONS
19	Myosin VI and branched actin filaments mediate membrane constriction and fission of melanosomal tubule carriers. Journal of Cell Biology, 2018, 217, 2709-2726.	5.2	46
20	Oxidation of F-actin controls the terminal steps of cytokinesis. Nature Communications, 2017, 8, 14528.	12.8	130
21	Emerging roles of MICAL family proteins – from actin oxidation to membrane trafficking during cytokinesis. Journal of Cell Science, 2017, 130, 1509-1517.	2.0	63
22	Mechanistic and structural basis for activation of cardiac myosin force production by omecamtiv mecarbil. Nature Communications, 2017, 8, 190.	12.8	153
23	Coupling fission and exit of RAB6 vesicles at Golgi hotspots through kinesin-myosin interactions. Nature Communications, 2017, 8, 1254.	12.8	55
24	Myosin 7 and its adaptors link cadherins to actin. Nature Communications, 2017, 8, 15864.	12.8	49
25	Eml1 loss impairs apical progenitor spindle length and soma shape in the developing cerebral cortex. Scientific Reports, 2017, 7, 17308.	3.3	26
26	The divergent mitotic kinesin MKLP2 exhibits atypical structure and mechanochemistry. ELife, 2017, 6, .	6.0	39
27	Force-producing ADP state of myosin bound to actin. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, E1844-52.	7.1	76
28	The Force Producing ADP State of Myosin Bound to Actin. Biophysical Journal, 2016, 110, 13a.	0.5	0
29	A Structural Model of the Mitotic Kinesin-6 Mechanochemical Cycle. Biophysical Journal, 2016, 110, 192a-193a.	0.5	0
30	Myosin MyTH4-FERM structures highlight important principles of convergent evolution. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, E2906-15.	7.1	20
31	How Myosin Generates Force on Actin Filaments. Trends in Biochemical Sciences, 2016, 41, 989-997.	7.5	135
32	MyTH4-FERM myosins have an ancient and conserved role in filopod formation. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, E8059-E8068.	7.1	24
33	Rab35 GTPase couples cell division with initiation of epithelial apico-basal polarity and lumen opening. Nature Communications, 2016, 7, 11166.	12.8	97
34	Highly selective inhibition of myosin motors provides the basis of potential therapeutic application. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, E7448-E7455.	7.1	34
35	The myosin X motor is optimized for movement on actin bundles. Nature Communications, 2016, 7, 12456.	12.8	75
36	Coordinated recruitment of Spir actin nucleators and myosin V motors to Rab11 vesicle membranes. ELife, 2016, 5, .	6.0	53

Anne Houdusse-Juillé

#	Article	IF	CITATIONS
37	How Actin Initiates the Motor Activity of Myosin. Developmental Cell, 2015, 33, 401-412.	7.0	118
38	How Actin Initiates the Motor Activity of Myosin. Biophysical Journal, 2015, 108, 25a.	0.5	0
39	Novel myosin mutations for hereditary hearing loss revealed by targeted genomic capture and massively parallel sequencing. European Journal of Human Genetics, 2014, 22, 768-775.	2.8	44
40	Myosin VI Must Dimerize and Deploy Its Unusual Lever Arm in Order to Perform Its Cellular Roles. Cell Reports, 2014, 8, 1522-1532.	6.4	26
41	Conserved mechanisms of microtubule-stimulated ADP release, ATP binding, and force generation in transport kinesins. ELife, 2014, 3, e03680.	6.0	100
42	Structural Studies of the Doublecortin Family of MAPs. Methods in Cell Biology, 2013, 115, 27-48.	1.1	20
43	New insights into genotype–phenotype correlations for the doublecortin-related lissencephaly spectrum. Brain, 2013, 136, 223-244.	7.6	99
44	An Overview and Online Registry of Microvillus Inclusion Disease Patients and their <i>MYO5B</i> Mutations. Human Mutation, 2013, 34, 1597-1605.	2.5	62
45	MAPping out distribution routes for kinesin couriers. Biology of the Cell, 2013, 105, 465-487.	2.0	48
46	Molecular Basis for Specific Regulation of Neuronal Kinesin-3 Motors by Doublecortin Family Proteins. Molecular Cell, 2012, 47, 707-721.	9.7	116
47	Role of Insert-1 of Myosin VI in Modulating Nucleotide Affinity. Journal of Biological Chemistry, 2011, 286, 11716-11723.	3.4	19
48	Drosophila melanogaster Myosin-18 Represents a Highly Divergent Motor with Actin Tethering Properties. Journal of Biological Chemistry, 2011, 286, 21755-21766.	3.4	28
49	Template-free 13-protofilament microtubule–MAP assembly visualized at 8 à resolution. Journal of Cell Biology, 2010, 191, 463-470.	5.2	116
50	Cadherin-23, myosin VIIa and harmonin, encoded by Usher syndrome type I genes, form a ternary complex and interact with membrane phospholipids. Human Molecular Genetics, 2010, 19, 3557-3565.	2.9	94
51	Dimerization is Essential for the Large Step Size of Myosin VI. Biophysical Journal, 2010, 98, 724a.	0.5	0
52	Structural and Functional Insights into the Myosin Motor Mechanism. Annual Review of Biophysics, 2010, 39, 539-557.	10.0	352
53	Myosin VI Rewrites the Rules for Myosin Motors. Cell, 2010, 141, 573-582.	28.9	110
54	Steered Molecular Dynamics Simulation of Unfolding of Myosin VI Proximal Tail Domain. Biophysical Journal, 2010, 98, 724a.	0.5	0

Anne Houdusse-Juillé

#	Article	IF	CITATIONS
55	Structural Basis for Recruitment of Rab6-Interacting Protein 1 to Golgi via a RUN Domain. Structure, 2009, 17, 21-30.	3.3	73
56	The structural basis of Arf effector specificity: the crystal structure of ARF6 in a complex with JIP4. EMBO Journal, 2009, 28, 2835-2845.	7.8	68
57	Dynein Swings into Action. Cell, 2009, 136, 395-396.	28.9	12
58	Myosin VI Dimerization Triggers an Unfolding of a Three-Helix Bundle in Order to Extend Its Reach. Molecular Cell, 2009, 35, 305-315.	9.7	89
59	Myosin VI Dimerizes And Walks Processively Along Actin. Biophysical Journal, 2009, 96, 142a.	0.5	0
60	Structural aspects of Rab6–effector complexes. Biochemical Society Transactions, 2009, 37, 1037-1041.	3.4	21
61	The post-rigor structure of myosin VI and implications for the recovery stroke. EMBO Journal, 2008, 27, 244-252.	7.8	31
62	Free Brick1 Is a Trimeric Precursor in the Assembly of a Functional Wave Complex. PLoS ONE, 2008, 3, e2462.	2.5	63
63	Biochemical and Structural Characterization of the Gem GTPase. Journal of Biological Chemistry, 2007, 282, 1905-1915.	3.4	46
64	The unique insert at the end of the myosin VI motor is the sole determinant of directionality. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104, 778-783.	7.1	76
65	The Structural Basis for the Large Powerstroke of Myosin VI. Cell, 2007, 131, 300-308.	28.9	75
66	Improving Diffraction from 3 to 2 Ã for a Complex between a Small GTPase and Its Effector by Analysis of Crystal Contacts and Use of Reverse Screening. Crystal Growth and Design, 2007, 7, 2140-2146.	3.0	5
67	Structural basis for ARF1-mediated recruitment of ARHGAP21 to Golgi membranes. EMBO Journal, 2007, 26, 1953-1962.	7.8	86
68	What can myosin VI do in cells?. Current Opinion in Cell Biology, 2007, 19, 57-66.	5.4	108
69	Distinct roles of doublecortin modulating the microtubule cytoskeleton. EMBO Journal, 2006, 25, 4448-4457.	7.8	126
70	Crystal structure of apo-calmodulin bound to the first two IQ motifs of myosin V reveals essential recognition features. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103, 19326-19331.	7.1	125
71	Electrospray ionization mass spectrometry studies of noncovalent myosin VI complexes reveal a new specific calmodulin binding site. Journal of the American Society for Mass Spectrometry, 2005, 16, 1367-1376.	2.8	18
72	The structure of the myosin VI motor reveals the mechanism of directionality reversal. Nature, 2005, 435, 779-785.	27.8	206

#	Article	IF	CITATIONS
73	Magnesium Regulates ADP Dissociation from Myosin V. Journal of Biological Chemistry, 2005, 280, 6072-6079.	3.4	69
74	Griscelli syndrome restricted to hypopigmentation results from a melanophilin defect (GS3) or a MYO5A F-exon deletion (GS1). Journal of Clinical Investigation, 2005, 115, 1100-1100.	8.2	5
75	The structure of the rigor complex and its implications for the power stroke. Philosophical Transactions of the Royal Society B: Biological Sciences, 2004, 359, 1819-1828.	4.0	137
76	The motor mechanism of myosin V: insights for muscle contraction. Philosophical Transactions of the Royal Society B: Biological Sciences, 2004, 359, 1829-1842.	4.0	66
77	The unique insert in myosin VI is a structural calcium-calmodulin binding site. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101, 4787-4792.	7.1	73
78	Three myosin V structures delineate essential features of chemo-mechanical transduction. EMBO Journal, 2004, 23, 4527-4537.	7.8	273
79	Mechanism of Microtubule Stabilization by Doublecortin. Molecular Cell, 2004, 14, 833-839.	9.7	220
80	A double-take on MAPs. Nature Structural and Molecular Biology, 2003, 10, 314-316.	8.2	6
81	A structural state of the myosin V motor without bound nucleotide. Nature, 2003, 425, 419-423.	27.8	288
82	Isolation and Characterization of an Aggresome Determinant in theNF2 Tumor Suppressor. Journal of Biological Chemistry, 2003, 278, 6235-6242.	3.4	10
83	Biochemical and functional characterization of Rab27a mutations occurring in Griscelli syndrome patients. Blood, 2003, 101, 2736-2742.	1.4	87
84	Griscelli syndrome restricted to hypopigmentation results from a melanophilin defect (GS3) or a MYO5A F-exon deletion (GS1). Journal of Clinical Investigation, 2003, 112, 450-456.	8.2	251
85	Myosin VIIa, harmonin and cadherin 23, three Usher I gene products that cooperate to shape the sensory hair cell bundle. EMBO Journal, 2002, 21, 6689-6699.	7.8	392
86	Myosin motors: missing structures and hidden springs. Current Opinion in Structural Biology, 2001, 11, 182-194.	5.7	147
87	Atomic Structure of Scallop Myosin Subfragment S1 Complexed with MgADP. Cell, 1999, 97, 459-470.	28.9	345
88	Structures of four Ca2+-bound troponin C at 2.0 Ã resolution: further insights into the Ca2+-switch in the calmodulin superfamily. Structure, 1997, 5, 1695-1711.	3.3	165
89	Structure of the regulatory domain of scallop myosin at 2 å resolution: implications for regulation. Structure, 1996, 4, 21-32.	3.3	214
90	A model of Ca2+-free calmodulin binding to unconventional myosins reveals how calmodulin acts as a regulatory switch. Structure, 1996, 4, 1475-1490.	3.3	101

#	Article	IF	CITATIONS
91	Crystallization and Preliminary X-ray Diffraction Study of an Idiotope-Anti-Idiotope Fv-Fv Complex. Journal of Molecular Biology, 1994, 241, 739-743.	4.2	9
92	Cloning, bacterial expression and crystallization of Fv antibody fragments. Journal of Crystal Growth, 1992, 122, 337-343.	1.5	3