
Nicholas L Balderston

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6494157/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Continuous Theta-Burst Stimulation to the Right Dorsolateral Prefrontal Cortex May Increase Potentiated Startle in Healthy Individuals. Biological Psychiatry Global Open Science, 2023, 3, 470-479.	2.2	5
2	<scp>Megaâ€analysis</scp> methods in <scp>ENIGMA</scp> : The experience of the generalized anxiety disorder working group. Human Brain Mapping, 2022, 43, 255-277.	3.6	51
3	Proof of concept study to develop a novel connectivity-based electric-field modelling approach for individualized targeting of transcranial magnetic stimulation treatment. Neuropsychopharmacology, 2022, 47, 588-598.	5.4	13
4	Cortical-subcortical structural connections support transcranial magnetic stimulation engagement of the amygdala. Science Advances, 2022, 8, .	10.3	31
5	Responding to uncertain threat: A potential mediator for the effect of mindfulness on anxiety. Journal of Anxiety Disorders, 2021, 77, 102332.	3.2	20
6	Fear conditioning and extinction in alcohol dependence: Evidence for abnormal amygdala reactivity. Addiction Biology, 2021, 26, e12835.	2.6	10
7	Combining transcranial magnetic stimulation with functional magnetic resonance imaging for probing and modulating neural circuits relevant to affective disorders. Wiley Interdisciplinary Reviews: Cognitive Science, 2021, 12, e1553.	2.8	22
8	Effects of Methylphenidate on the Neural Interplay Between Induced Anxiety and Working Memory. Biological Psychiatry, 2021, 89, S88-S89.	1.3	0
9	Effect of Repetitive Transcranial Magnetic Stimulation on Anxiety. Biological Psychiatry, 2021, 89, S289.	1.3	0
10	The novel vasopressin receptor (V1aR) antagonist SRX246 reduces anxiety in an experimental model in humans: a randomized proof-of-concept study. Psychopharmacology, 2021, 238, 2393-2403.	3.1	18
11	Neurophysiological and clinical effects of the NMDA receptor antagonist lanicemine (BHVâ€5500) in PTSD: A randomized, doubleâ€blind, placeboâ€controlled trial. Depression and Anxiety, 2021, 38, 1108-1119.	4.1	6
12	Cortical and subcortical brain structure in generalized anxiety disorder: findings from 28 research sites in the ENIGMA-Anxiety Working Group. Translational Psychiatry, 2021, 11, 502.	4.8	24
13	Methylphenidate modulates interactions of anxiety with cognition. Translational Psychiatry, 2021, 11, 544.	4.8	4
14	Location-dependent threat and associated neural abnormalities in clinical anxiety. Communications Biology, 2021, 4, 1263.	4.4	1
15	Device-Based Modulation of Neurocircuits as a Therapeutic for Psychiatric Disorders. Annual Review of Pharmacology and Toxicology, 2020, 60, 591-614.	9.4	29
16	Mechanistic link between right prefrontal cortical activity and anxious arousal revealed using transcranial magnetic stimulation in healthy subjects. Neuropsychopharmacology, 2020, 45, 694-702.	5.4	28
17	A generalized workflow for conducting electric field–optimized, fMRI-guided, transcranial magnetic stimulation. Nature Protocols, 2020, 15, 3595-3614.	12.0	36
18	Dimensional connectomics of anxious misery, a human connectome study related to human disease: Overview of protocol and data quality. NeuroImage: Clinical, 2020, 28, 102489.	2.7	8

NICHOLAS L BALDERSTON

#	Article	IF	CITATIONS
19	Patients with anxiety disorders rely on bilateral dlPFC activation during verbal working memory. Social Cognitive and Affective Neuroscience, 2020, 15, 1288-1298.	3.0	20
20	Better cognitive efficiency is associated with increased experimental anxiety. Psychophysiology, 2020, 57, e13559.	2.4	9
21	Low-frequency parietal repetitive transcranial magnetic stimulation reduces fear and anxiety. Translational Psychiatry, 2020, 10, 68.	4.8	26
22	Intrinsic connections between thalamic sub-regions and the lateral prefrontal cortex are differentially impacted by acute methylphenidate. Psychopharmacology, 2020, 237, 1873-1883.	3.1	4
23	Exercise modulates the interaction between cognition and anxiety in humans. Cognition and Emotion, 2019, 33, 863-870.	2.0	11
24	F211. Functional Neuronal Alterations During Fear Conditioning and Extinction Recall in Alcohol-Dependent and Healthy Individuals With and Without Early Life Stress. Biological Psychiatry, 2019, 85, S295.	1.3	1
25	A Proof-of-Mechanism Study to Test Effects of the NMDA Receptor Antagonist Lanicemine on Behavioral Sensitization in Individuals With Symptoms of PTSD. Frontiers in Psychiatry, 2019, 10, 846.	2.6	13
26	T15. Repetitive Transcranial Magnetic Stimulation Reveals a Causal Link Between Right dlPFC Activity and Anxiety Expression. Biological Psychiatry, 2019, 85, S135.	1.3	0
27	Statistical power comparisons at 3T and 7T with a GO / NOGO task. NeuroImage, 2018, 175, 100-110.	4.2	24
28	Extended amygdala connectivity changes during sustained shock anticipation. Translational Psychiatry, 2018, 8, 33.	4.8	39
29	S11. Neural Mechanisms of Contextual Threat Learning in Clinical Anxiety: Discrimination and Regulation. Biological Psychiatry, 2018, 83, S350-S351.	1.3	Ο
30	Effect of anxiety on behavioural pattern separation in humans. Cognition and Emotion, 2017, 31, 238-248.	2.0	35
31	Anxiety Patients Show Reduced Working Memory Related dlPFC Activation During Safety and Threat. Depression and Anxiety, 2017, 34, 25-36.	4.1	71
32	The effects of stimulus novelty and negativity on BOLD activity in the amygdala, hippocampus, and bed nucleus of the stria terminalis. Social Cognitive and Affective Neuroscience, 2017, 12, 748-757.	3.0	23
33	Effect of Threat on Right dlPFC Activity during Behavioral Pattern Separation. Journal of Neuroscience, 2017, 37, 9160-9171.	3.6	27
34	Reducing State Anxiety Using Working Memory Maintenance. Journal of Visualized Experiments, 2017, , .	0.3	4
35	Resting state connectivity of the human habenula at ultra-high field. NeuroImage, 2017, 147, 872-879.	4.2	58
36	The relationship between dlPFC activity during unpredictable threat and CO2-induced panic symptoms. Translational Psychiatry, 2017, 7, 1266.	4.8	25

NICHOLAS L BALDERSTON

#	Article	IF	CITATIONS
37	Threat of shock increases excitability and connectivity of the intraparietal sulcus. ELife, 2017, 6, .	6.0	32
38	Psychopaths Show Enhanced Amygdala Activation during Fear Conditioning. Frontiers in Psychology, 2016, 7, 348.	2.1	24
39	The neural basis of improved cognitive performance by threat of shock. Social Cognitive and Affective Neuroscience, 2016, 11, 1677-1686.	3.0	29
40	Working memory maintenance is sufficient to reduce state anxiety. Psychophysiology, 2016, 53, 1660-1668.	2.4	27
41	Resting state connectivity of the bed nucleus of the stria terminalis at ultraâ€high field. Human Brain Mapping, 2015, 36, 4076-4088.	3.6	84
42	Functionally distinct amygdala subregions identified using DTI and high-resolution fMRI. Social Cognitive and Affective Neuroscience, 2015, 10, 1615-1622.	3.0	30
43	fMRI Functional Connectivity Applied to Adolescent Neurodevelopment. Annual Review of Clinical Psychology, 2015, 11, 361-377.	12.3	91
44	Introduction to Functional Brain Connectivity: Potential Contributions to Understanding Adolescent Vulnerability to Substance Abuse. , 2015, , 181-199.		0
45	Rapid Amygdala Responses during Trace Fear Conditioning without Awareness. PLoS ONE, 2014, 9, e96803.	2.5	26
46	Prefrontal cortical regulation of fear learning. Trends in Neurosciences, 2014, 37, 455-464.	8.6	145
47	The interplay of attention and emotion: top-down attention modulates amygdala activation in psychopathy. Cognitive, Affective and Behavioral Neuroscience, 2013, 13, 757-770.	2.0	100
48	Dissociation between implicit and explicit responses in postconditioning UCS revaluation after fear conditioning in humans Behavioral Neuroscience, 2013, 127, 357-368.	1.2	24
49	How to Detect Amygdala Activity with Magnetoencephalography using Source Imaging. Journal of Visualized Experiments, 2013, , .	0.3	19
50	The Effect of Threat on Novelty Evoked Amygdala Responses. PLoS ONE, 2013, 8, e63220.	2.5	23
51	Resting-state connectivity of the amygdala is altered following Pavlovian fear conditioning. Frontiers in Human Neuroscience, 2012, 6, 242.	2.0	52
52	The human amygdala plays a stimulus specific role in the detection of novelty. NeuroImage, 2011, 55, 1889-1898.	4.2	91
53	Conditioning with masked stimuli affects the timecourse of skin conductance responses Behavioral Neuroscience, 2010, 124, 478-489.	1.2	28
54	Introduction to Functional Brain Connectivity. , 0, , .		0

4