List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6494077/publications.pdf Version: 2024-02-01

ΕΠΙ ΟΗΙΟΛΚΑΝΑΛ

#	Article	IF	CITATIONS
1	Amidoalkylation of Sulfonylheteroarenes with Alkylamides through a Radical Chain Mechanism. European Journal of Organic Chemistry, 2021, 2021, 794-797.	2.4	5
2	Chemistry of Tertiary Carbon Center in the Formation of Congested Câ^'O Ether Bonds. Angewandte Chemie - International Edition, 2021, 60, 4329-4334.	13.8	19
3	1.4 Electron Catalysis. , 2021, , .		0
4	Innentitelbild: Chemistry of Tertiary Carbon Center in the Formation of Congested Câ^'O Ether Bonds (Angew. Chem. 8/2021). Angewandte Chemie, 2021, 133, 3870-3870.	2.0	0
5	Alkylation of Heteroaryl Chlorides through Homolytic Aromatic Substitution by Alkyl Radicals Derived from Alkyl Formates. Chemistry Letters, 2021, 50, 1006-1010.	1.3	2
6	Chemistry of Tertiary Carbon Center in the Formation of Congested Câ^'O Ether Bonds. Angewandte Chemie, 2021, 133, 4375-4380.	2.0	6
7	Direct αâ€Arylation of Alcohols with Aryl Halides through a Radical Chain Mechanism. Advanced Synthesis and Catalysis, 2020, 362, 2200-2204.	4.3	10
8	Electron-Catalyzed Cross-Coupling Reactions. Yuki Gosei Kagaku Kyokaishi/Journal of Synthetic Organic Chemistry, 2019, 77, 433-441.	0.1	0
9	Electron atalyzed Crossâ€Coupling of Arylboron Compounds with Aryl Iodides. Angewandte Chemie - International Edition, 2018, 57, 7186-7190.	13.8	15
10	Electron atalyzed Coupling of Magnesium Amides with Aryl Iodides. Chemistry - A European Journal, 2018, 24, 4519-4522.	3.3	12
11	Electron atalyzed Crossâ€Coupling of Arylboron Compounds with Aryl Iodides. Angewandte Chemie, 2018, 130, 7304-7308.	2.0	2
12	α-Arylation of alkylamines with sulfonylarenes through a radical chain mechanism. Chemical Communications, 2018, 54, 10471-10474.	4.1	18
13	<i>tert</i> -Butoxide-promoted Coupling of Aryl lodides with Arenes Using Di- <i>tert</i> -butyl Hyponitrite as an Initiator. Chemistry Letters, 2017, 46, 1757-1759.	1.3	5
14	<i>tert</i> â€Butoxyâ€Radicalâ€Promoted αâ€Arylation of Alkylamines with Aryl Halides. European Journal of Organic Chemistry, 2017, 2017, 4188-4193.	2.4	22
15	Singleâ€Electronâ€Transferâ€Induced Coupling of Alkylzinc Reagents with Aryl Iodides. European Journal of Organic Chemistry, 2016, 2016, 3043-3046.	2.4	15
16	Single electron transfer-induced coupling of alkynylzinc reagents with aryl and alkenyl iodides. Chemical Communications, 2016, 52, 14019-14022.	4.1	16
17	Reduction of Aryl Halides into Arenes with 2-Propanol Promoted by a Substoichiometric Amount of a tert-Butoxy Radical Source. Synlett, 2016, 27, 741-744.	1.8	23
18	Single-Electron-Transfer-Induced Coupling of Arylzinc Reagents with Aryl and Alkenyl Halides. Angewandte Chemie, 2014, 126, 531-535.	2.0	15

#	Article	IF	CITATIONS
19	Singleâ€Electronâ€Transferâ€Induced Coupling of Arylzinc Reagents with Aryl and Alkenyl Halides. Angewandte Chemie - International Edition, 2014, 53, 521-525.	13.8	46
20	Base-promoted dehydrogenative coupling of benzene derivatives with amides or ethers. Organic and Biomolecular Chemistry, 2014, 12, 7469-7473.	2.8	23
21	Improved Procedure for Single-electron-transfer-induced Grignard Cross-coupling Reaction. Chemistry Letters, 2014, 43, 922-924.	1.3	16
22	Indium-catalyzed annulation of 3-aryl- and 3-heteroarylindoles with propargyl ethers: synthesis and photoluminescent properties of aryl- and heteroaryl[c]carbazoles. Organic and Biomolecular Chemistry, 2013, 11, 1456.	2.8	26
23	Single electron transfer-induced Grignard cross-coupling involving ion radicals as exclusive intermediates. Chemical Communications, 2013, 49, 364-366.	4.1	48
24	Single electron transfer-induced cross-coupling reaction of alkenyl halides with aryl Grignard reagents. Chemical Communications, 2013, 49, 5219.	4.1	34
25	Copper-catalyzed Oxidative C–C, C–O, and C–N Bond Forming Reactions of Arylboronic Acids. Chemistry Letters, 2013, 42, 269-271.	1.3	6
26	Single Electron-Catalyzed Coupling Reactions of Aryl Halides. Yuki Gosei Kagaku Kyokaishi/Journal of Synthetic Organic Chemistry, 2013, 71, 526-534.	0.1	7
27	Transition-metal-free Coupling Reactions of Aryl Halides. Chemistry Letters, 2012, 41, 130-134.	1.3	117
28	Ruthenium-Catalyzed Transformation of Aryl and Alkenyl Triflates to Halides. Journal of the American Chemical Society, 2012, 134, 14760-14763.	13.7	56
29	Iron–Copper Cooperative Catalysis in the Reactions of Alkyl Grignard Reagents: Exchange Reaction with Alkenes and Carbometalation of Alkynes. Journal of the American Chemical Society, 2012, 134, 272-279.	13.7	142
30	Cross oupling of Aryl Grignard Reagents with Aryl Iodides and Bromides through S _{RN} 1 Pathway. Angewandte Chemie - International Edition, 2012, 51, 218-221.	13.8	97
31	Iron-catalyzed aryl- and alkenyllithiation of alkynes and its application to benzosilole synthesis. Chemical Communications, 2011, 47, 9714.	4.1	50
32	Iron-Catalyzed Oxidative Coupling of Alkylamides with Arenes through Oxidation of Alkylamides Followed by Friedelâ^'Crafts Alkylation. Journal of Organic Chemistry, 2011, 76, 25-34.	3.2	114
33	Iron-catalyzed Oxidative Coupling of Alkylamines with Arenes, Nitroalkanes, and 1,3-Dicarbonyl Compounds. Chemistry Letters, 2011, 40, 1041-1043.	1.3	32
34	Ruthenium-catalyzed reaction of alkenyl triflates with zinc thiolates. Tetrahedron, 2011, 67, 10212-10215.	1.9	8
35	Iron-catalyzed oxidative coupling of arylboronic acids with benzene derivatives through homolytic aromatic substitution. Chemical Communications, 2011, 47, 11671.	4.1	67
36	Mizoroki–Heckâ€Type Reaction Mediated by Potassium <i>tert</i> â€Butoxide. Angewandte Chemie - International Edition, 2011, 50, 4671-4674.	13.8	153

EIJI SHIRAKAWA

#	Article	IF	CITATIONS
37	<i>tert</i> -Butoxide-Mediated Arylation of Benzene with Aryl Halides in the Presence of a Catalytic 1,10-Phenanthroline Derivative. Journal of the American Chemical Society, 2010, 132, 15537-15539.	13.7	470
38	Synthesis of Methanes Having Four Different Carbon Substituents Utilizing Indium atalyzed Cleavage of Carbon–Pyrrolyl Bonds. European Journal of Organic Chemistry, 2009, 2009, 2437-2440.	2.4	19
39	New preparation and synthetic reactions of 3,3,3-trifluoropropynyllithium, -borate and -stannane: facile synthesis of trifluoromethylated allenes, arylacetylenes and enynes. Future Medicinal Chemistry, 2009, 1, 921-945.	2.3	18
40	Iron-catalyzed carbolithiation of alkynes having no heteroatoms. Chemical Communications, 2009, , 1885.	4.1	29
41	Ruthenium-catalyzed transformation of alkenyl triflates to alkenyl halides. Chemical Communications, 2009, , 5088.	4.1	29
42	Indium-Catalyzed Annulation of 2-Aryl- and 2-Heteroarylindoles with Propargyl Ethers: Concise Synthesis and Photophysical Properties of Diverse Aryl- and Heteroaryl-Annulated[<i>a</i>]carbazoles. Journal of the American Chemical Society, 2008, 130, 15823-15835.	13.7	188
43	Fe–Cu cooperative catalysis in the isomerization of alkyl Grignard reagents. Chemical Communications, 2008, , 1214.	4.1	30
44	Cobalt-catalyzed Coupling of Alkenyl Triflates with Aryl and Alkenyl Grignard Reagents. Chemistry Letters, 2008, 37, 654-655.	1.3	27
45	Palladium-catalyzed conjugate reduction of enones into α,β-dideuterioketones with hexamethyldisilane and deuterium oxide. Chemical Communications, 2007, , 1819-1821.	4.1	34
46	Cobalt-catalyzed cross-coupling of alkynyl Grignard reagents with alkenyl triflates. Chemical Communications, 2007, , 4513.	4.1	34
47	Iron-Catalyzed Arylmagnesiation of Aryl(alkyl)acetylenes in the Presence of anN-Heterocyclic Carbene Ligand. Organic Letters, 2007, 9, 1045-1048.	4.6	108
48	Palladium-catalyzed silylation of alcohols with hexamethyldisilane. Chemical Communications, 2006, , 3927.	4.1	37
49	Ruthenium-Catalyzed Addition of Terminal Alkynes to Alkynylstannanes with Migration of the Stannyl Group. Bulletin of the Chemical Society of Japan, 2006, 79, 1963-1976.	3.2	12
50	Nickel-catalyzed Conjugate Addition of Arylboron Reagents to α,β-Unsaturated Carbonyl Compounds with the Aid of a Catalytic Amount of an Alkyne. Chemistry Letters, 2006, 35, 768-769.	1.3	39
51	A Simple Catalyst System for the Palladium-Catalyzed Coupling of Aryl Halides with Terminal Alkynes ChemInform, 2006, 37, no.	0.0	0
52	Regio- and Stereoselective Decarbonylative Carbostannylation of Alkynes Catalyzed by Pd/C. Angewandte Chemie - International Edition, 2006, 45, 2271-2274.	13.8	38
53	Nickel-Catalyzed Addition of Organoboronates to 1,2-Dienes and the Corresponding Three-Component Reaction with an Alkyne. Advanced Synthesis and Catalysis, 2006, 348, 837-840.	4.3	29
54	Facile Synthesis of Trifluoromethyl-substituted Enynes: Remarkable Reactivity and Stereoselectivity of Tributyl(3,3,3-trifluoropropynyl)stannane in Carbostannylation of Alkynes. Chemistry Letters, 2005, 34, 1700-1701.	1.3	15

#	Article	IF	CITATIONS
55	A simple catalyst system for the palladium-catalyzed coupling of aryl halides with terminal alkynes. Tetrahedron, 2005, 61, 9878-9885.	1.9	45
56	Easy Access to Aryl- and Heteroaryl-Annulated[a]carbazoles by the Indium-Catalyzed Reaction of 2-Arylindoles with Propargyl Ethers. Angewandte Chemie - International Edition, 2005, 44, 1336-1340.	13.8	77
57	Ruthenium-Catalyzed Hydrogenation of Alkynylstannanes with Migration of the Stannyl Group ChemInform, 2005, 36, no.	0.0	0
58	Nickel-Catalyzed Acylstannylation and Alkynylstannylation of 1,2-Dienes ChemInform, 2005, 36, no.	0.0	0
59	A p-Phosphinophenolate Ligand for the Palladium-Catalyzed Arylation of Alkenes ChemInform, 2005, 36, no.	0.0	0
60	Stannylative Cycloaddition of Enynes Catalyzed by Palladium?Iminophosphine ChemInform, 2005, 36, no.	0.0	0
61	Easy Access to Aryl- and Heteroaryl-Annulated[a]carbazoles by the Indium-Catalyzed Reaction of 2-Arylindoles with Propargyl Ethers ChemInform, 2005, 36, no.	0.0	0
62	Alkynes as Activators in the Nickel-Catalyzed Addition of Organoboronates to Aldehydes ChemInform, 2005, 36, no.	0.0	0
63	Synthesis of Multisubstituted 1,3-Butadienes Using the Ruthenium-Catalyzed Double Addition of Trimethylsilyldiazomethane to Alkynylboronates ChemInform, 2005, 36, no.	0.0	0
64	Reduction of alkynes into 1,2-dideuterioalkenes with hexamethyldisilane and deuterium oxide in the presence of a palladium catalyst. Chemical Communications, 2005, , 5885.	4.1	82
65	Arylmagnesiation of Alkynes Catalyzed Cooperatively by Iron and Copper Complexes. Journal of the American Chemical Society, 2005, 127, 17164-17165.	13.7	138
66	Synthesis of multisubstituted 1,3-butadienes using the ruthenium-catalysed double addition of trimethylsilyldiazomethane to alkynylboronates. Organic and Biomolecular Chemistry, 2005, 3, 1263.	2.8	36
67	Alkynes as activators in the nickel-catalysed addition of organoboronates to aldehydes. Chemical Communications, 2005, , 1459.	4.1	67
68	Studies on Transition Metal-Catalyzed Carbostannylations of Carbon-Carbon Unsaturated Bonds. Yuki Gosei Kagaku Kyokaishi/Journal of Synthetic Organic Chemistry, 2004, 62, 616-628.	0.1	1
69	Nickel-Catalyzed Tandem Carbostannylation of Alkynes and 1,2-Dienes with Alkynylstannanes. Angewandte Chemie - International Edition, 2004, 43, 3448-3451.	13.8	47
70	Zirconium Triflate Catalyzed Direct Coupling Reaction of Lactams with Heterocyclic Arenes under Atmospheric Oxygen. Angewandte Chemie - International Edition, 2004, 43, 4231-4233.	13.8	54
71	Indium Triflate-Catalyzed Double Addition of Heterocyclic Arenes to Alkynes ChemInform, 2004, 35, no.	0.0	0
72	Transition Metal Catalyzed Carbostannylations of Carbon—Carbon Unsaturated Bonds. ChemInform, 2004, 35, no.	0.0	0

#	Article	IF	CITATIONS
73	Zirconium Triflate Catalyzed Direct Coupling Reaction of Lactams with Heterocyclic Arenes under Atmospheric Oxygen ChemInform, 2004, 35, no.	0.0	0
74	Nickel-catalyzed acylstannylation and alkynylstannylation of 1,2-dienes. Journal of Organometallic Chemistry, 2004, 689, 3701-3721.	1.8	30
75	A p-phosphinophenolate ligand for the palladium-catalysed arylation of alkenes. Chemical Communications, 2004, , 2752.	4.1	3
76	Stannylative Cycloaddition of Enynes Catalyzed by Palladiumâ^'Iminophosphine. Journal of the American Chemical Society, 2004, 126, 15650-15651.	13.7	37
77	Ruthenium-Catalyzed Hydrogenation of Alkynylstannanes with Migration of the Stannyl Group. Journal of the American Chemical Society, 2004, 126, 13614-13615.	13.7	33
78	Addition of Ureas to Arynes: Straightforward Synthesis of Benzodiazepine and Benzodiazocine Derivatives ChemInform, 2003, 34, no-no.	0.0	152
79	Nickel-Catalyzed Addition of Organoboronates to 1,3-Dienes ChemInform, 2003, 34, no.	0.0	0
80	Palladium—Iminophosphine-Catalyzed Homocoupling of Alkynylstannanes and Other Organostannanes Using Allyl Acetate or Air as an Oxidant ChemInform, 2003, 34, no.	0.0	0
81	Palladium-Catalyzed Dimerization of Vinylarenes Using Indium Triflate as an Effective Co-catalyst ChemInform, 2003, 34, no.	0.0	0
82	Palladium–iminophosphine-catalyzed homocoupling of alkynylstannanes and other organostannanes using allyl acetate or air as an oxidant. Journal of Organometallic Chemistry, 2003, 670, 132-136.	1.8	48
83	Separation of Optically Active Ethynylsilane Derivatives and Their Polymerization by Transition-Metal Catalysts. Macromolecules, 2003, 36, 7461-7468.	4.8	11
84	Palladium-catalysed dimerization of vinylarenes using indium triflate as an effective co-catalyst. Chemical Communications, 2003, , 852-853.	4.1	80
85	Indium triflate-catalysed double addition of heterocyclic arenes to alkynes. Chemical Communications, 2003, , 2454.	4.1	75
86	Generation of Silylethynolates via C-Si Bond Cleavage of Disilylketenes Induced byt-BuOK. Synlett, 2002, 2002, 1329-1331.	1.8	12
87	Transition Metal-Catalyzed Carbostannylation of Alkynes and Dienes. Bulletin of the Chemical Society of Japan, 2002, 75, 1435-1450.	3.2	32
88	Synthesis of Stereoregular and Optically Active Poly[{methyl(1-naphthyl)silylene}(o-phenylene)methylene] by Platinum-Catalyzed Ring-Opening Polymerization. Macromolecules, 2002, 35, 2455-2460.	4.8	28
89	Synthesis of polycyclic compounds utilizing the nickel-catalysed alkynylstannylation of 1,2-dienes. Chemical Communications, 2002, , 1962-1963.	4.1	20
90	Nickel-catalysed addition of organoboronates to 1,3-dienesElectronic supplementary information (ESI) available: 1H NMR spectra and MS data. See http://www.rsc.org/suppdata/cc/b2/b207185a/. Chemical Communications, 2002, , 2210-2211.	4.1	21

EIJI SHIRAKAWA

#	Article	IF	CITATIONS
91	Addition of Ureas to Arynes: Straightforward Synthesis of Benzodiazepine and Benzodiazocine Derivatives. Angewandte Chemie, 2002, 114, 3381-3383.	2.0	46
92	Addition of Ureas to Arynes: Straightforward Synthesis of Benzodiazepine and Benzodiazocine Derivatives. Angewandte Chemie - International Edition, 2002, 41, 3247-3249.	13.8	208
93	Synthesis of functionalized alkenes by transition metal-catalyzed carbostannylations of alkynes and dienes followed by cross-coupling reactions. Journal of Organometallic Chemistry, 2002, 653, 114-121.	1.8	36
94	Nickel-catalysed hydroarylation of alkynes using arylboron compounds: selective synthesis of multisubstituted arylalkenes and aryldienes. Chemical Communications, 2001, , 2688-2689.	4.1	90
95	Nickel-catalysed acylstannylation of 1,2-dienes: synthesis and reactions of α-(acylmethyl)vinylstannanes. Chemical Communications, 2001, , 263-264.	4.1	32
96	Palladium–iminophosphine-catalysed carbostannylation of arynes: synthesis of ortho-substituted arylstannanes. Chemical Communications, 2001, , 1880-1881.	4.1	99
97	Transition metal-catalysed acylation of $\hat{I}\pm,\hat{I}^2$ -unsaturated carbonyl compounds with acylstannanes. Chemical Communications, 2001, , 1926-1927.	4.1	24
98	Regioselective Ring Opening of 1-Methyl-1-(1-naphthyl)-2,3-benzosilacyclobut-2-ene by Carbanion and Silyl Anion. Chemistry Letters, 2001, 30, 986-987.	1.3	13
99	Dimerization–Carbostannylation of Alkynes Catalyzed by a Palladium–Diimine Complex: Regioselectivity, Stereoselectivity and Mechanism. Bulletin of the Chemical Society of Japan, 2001, 74, 637-647.	3.2	44
100	Stereo-Recognition of Propagating Chain End in the Cross-Dehydrocoupling Polymerization of meso-1,3-Dimethyl-1,3-diphenyldisiloxanediol with Methylphenylsilane. Polymer Journal, 2000, 32, 980-983.	2.7	6
101	Stereospecific formation of optically active trialkylsilyllithiums and their configurational stability. Journal of Organometallic Chemistry, 2000, 611, 20-25.	1.8	49
102	Friedel–Crafts alkenylation of arenes using alkynes catalysed by metal trifluoromethanesulfonates. Chemical Communications, 2000, , 1573-1574.	4.1	156
103	Diphenylphosphinophenolate: a ligand for the palladium-catalysed silylation of aryl halides activating simultaneously both palladium and silicon. Chemical Communications, 2000, , 1895-1896.	4.1	50
104	Palladiumâ^'Iminophosphine-Catalyzed Alkynylstannylation of Alkynes. Organometallics, 2000, 19, 5671-5678.	2.3	70
105	Mechanistic Aspects of Palladium-Catalyzed Allylstannylation of Alkynes. Organic Letters, 2000, 2, 2209-2211.	4.6	48
106	Nickel-Catalyzed Acylstannylation of 1,3-Dienes:  Synthesis and Reaction of ε-Oxoallylstannanes. Journal of the American Chemical Society, 2000, 122, 9030-9031.	13.7	53
107	The palladium–iminophosphine catalyst for the reactions of organostannanes. Journal of Organometallic Chemistry, 1999, 576, 169-178.	1.8	53
108	Diastereoselective aldol reaction of an α-alkoxycarbonylamino aldehyde with a silyl enol ether. Tetrahedron: Asymmetry, 1999, 10, 3443-3448.	1.8	3

#	Article	IF	CITATIONS
109	Nickel-Catalyzed Carbostannylation of Alkynes with Allyl-, Acyl-, and Alkynylstannanes:Â Stereoselective Synthesis of Trisubstituted Vinylstannanes. Journal of the American Chemical Society, 1999, 121, 10221-10222.	13.7	121
110	Palladium-Catalyzed Dimerizationâ^'Carbostannylation of Alkynes:Â Synthesis of Highly Conjugated Alkenylstannanes. Journal of the American Chemical Society, 1999, 121, 4290-4291.	13.7	76
111	Asymmetric Hydroformylation of Olefins in Highly Crosslinked Polymer Matrixes. Bulletin of the Chemical Society of Japan, 1999, 72, 1911-1918.	3.2	50
112	Asymmetric Hydroformylation of Olefins in a Highly Cross-Linked Polymer Matrix. Journal of the American Chemical Society, 1998, 120, 4051-4052.	13.7	159
113	Carbostannylation of Alkynes Catalyzed by an Iminophosphineâ^Palladium Complex. Journal of the American Chemical Society, 1998, 120, 2975-2976.	13.7	111
114	Reactions of Organostannanes Catalyzed by a Palladium-Iminophosphine Complex Yuki Gosei Kagaku Kyokaishi/Journal of Synthetic Organic Chemistry, 1998, 56, 810-817.	0.1	1
115	Homocoupling of Organostannanes Catalyzed by Iminophosphine-Palladium. Synlett, 1997, 1997, 1143-1144.	1.8	24
116	Novel Renin Inhibitors Containing (2S,3S,5S)-2-Amino-1-cyclohexyl-6-methyl-3,5-heptanediol Fragment as a Transition-state Mimic at the P1-P1' Cleavage Site Chemical and Pharmaceutical Bulletin, 1997, 45, 1631-1641.	1.3	4
117	Asymmetric Hydroformylation of Heterocyclic Olefins Catalyzed by Chiral Phosphineâ^'Phosphiteâ^'Rh(I) Complexes. Journal of Organic Chemistry, 1997, 62, 4285-4292.	3.2	129
118	Mechanistic Aspects of Asymmetric Hydroformylation of Olefins Catalyzed by Chiral Phosphineâ^'Phosphiteâ^'Rhodium(I) Complexes. Organometallics, 1997, 16, 2981-2986.	2.3	97
119	(R,S)-BINAPHOS-Ni(0) and -Pd(0) complexes: characterization and use for asymmetric hydrocyanation of norbornene. Tetrahedron: Asymmetry, 1997, 8, 57-63.	1.8	54
120	Asymmetric hydroformylation of conjugated dienes catalyzed by chiral phosphine-phosphite-Rh(I) complex. Tetrahedron, 1997, 53, 7795-7804.	1.9	89
121	An iminophosphine-palladium catalyst for cross-coupling of aryl halides with organostannanes. Tetrahedron Letters, 1997, 38, 3759-3762.	1.4	68
122	On the catalytic cycle of the palladium-catalyzed cross-coupling reaction of alkynylstannane with aryl iodide. Tetrahedron Letters, 1997, 38, 5177-5180.	1.4	36
123	Reaction of Disilylketenes with Organolithiums: New Synthetic Route to Silylacetylene Derivatives. Synlett, 1996, 1996, 635-636.	1.8	9
124	Lipoxygenase-catalyzed oxygenation of arachidonylethanolamide, a cannabinoid receptor agonist. Lipids and Lipid Metabolism, 1995, 1254, 127-134.	2.6	152
125	Electroorganic chemistry. 129. Electroreductive synthesis of chiral piperazines and enantioselective addition of diethylzinc to aldehydes in the presence of the chiral piperazines. Journal of Organic Chemistry, 1991, 56, 3063-3067.	3.2	90
126	Asymmetric synthesis of β-hydroxy-α-alkylamino acids by asymmetric aldol reaction of α-isocyanocarboxylates catalyzed by chiral ferrocenylphosphine-gold(l) complexes. Tetrahedron, 1988, 44, 5253-5262.	1.9	291

#	Article	IF	CITATIONS
127	Asymmetric aldol reaction of α-isocyanocarboxylates with paraformaldehyde catalyzed by chiral ferrocenylphosphine-gold(I) complexes: Catalytic asymmetric synthesis of α-alkylserines. Tetrahedron Letters, 1988, 29, 235-238.	1.4	122
128	Overview of Other Palladium-Catalyzed Cross-Coupling Protocols. , 0, , 285-309.		23
129	Tin in Organic Synthesis. , 0, , 497-665.		6