Stephen T Oh

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6493887/publications.pdf Version: 2024-02-01

Stedhen T Oh

#	Article	IF	CITATIONS
1	<i>TP53</i> and Decitabine in Acute Myeloid Leukemia and Myelodysplastic Syndromes. New England Journal of Medicine, 2016, 375, 2023-2036.	27.0	663
2	Cytokine-induced memory-like natural killer cells exhibit enhanced responses against myeloid leukemia. Science Translational Medicine, 2016, 8, 357ra123.	12.4	621
3	Oncogenic <i>CSF3R</i> Mutations in Chronic Neutrophilic Leukemia and Atypical CML. New England Journal of Medicine, 2013, 368, 1781-1790.	27.0	499
4	Novel mutations in the inhibitory adaptor protein LNK drive JAK-STAT signaling in patients with myeloproliferative neoplasms. Blood, 2010, 116, 988-992.	1.4	295
5	High-Dimensional Analysis Delineates Myeloid and Lymphoid Compartment Remodeling during Successful Immune-Checkpoint Cancer Therapy. Cell, 2018, 175, 1014-1030.e19.	28.9	292
6	Brief Report: Chikungunya Viral Arthritis in the United States: A Mimic of Seronegative Rheumatoid Arthritis. Arthritis and Rheumatology, 2015, 67, 1214-1220.	5.6	122
7	Cytokine production in myelofibrosis exhibits differential responsiveness to JAK-STAT, MAP kinase, and NFκB signaling. Leukemia, 2019, 33, 1978-1995.	7.2	94
8	Efficacy and safety of avapritinib in advanced systemic mastocytosis: interim analysis of the phase 2 PATHFINDER trial. Nature Medicine, 2021, 27, 2192-2199.	30.7	79
9	ACVR1/JAK1/JAK2 inhibitor momelotinib reverses transfusion dependency and suppresses hepcidin in myelofibrosis phase 2 trial. Blood Advances, 2020, 4, 4282-4291.	5.2	77
10	<i>JAK2</i> V617F and beyond: role of genetics and aberrant signaling in the pathogenesis of myeloproliferative neoplasms. Expert Review of Hematology, 2010, 3, 323-337.	2.2	73
11	Efficacy of Ruxolitinib in Patients With Chronic Neutrophilic Leukemia and Atypical Chronic Myeloid Leukemia. Journal of Clinical Oncology, 2020, 38, 1006-1018.	1.6	71
12	Polycythemia Vera: An Appraisal of the Biology and Management 10 Years After the Discovery of <i>JAK2 V617F</i> . Journal of Clinical Oncology, 2015, 33, 3953-3960.	1.6	69
13	Co-evolution of tumor and immune cells during progression of multiple myeloma. Nature Communications, 2021, 12, 2559.	12.8	68
14	Determining the recommended dose of pacritinib: results from the PAC203 dose-finding trial in advanced myelofibrosis. Blood Advances, 2020, 4, 5825-5835.	5.2	60
15	Genomic landscape of neutrophilic leukemias of ambiguous diagnosis. Blood, 2019, 134, 867-879.	1.4	55
16	Myeloid/lymphoid neoplasms with <i>FGFR1</i> rearrangement. Leukemia and Lymphoma, 2018, 59, 1672-1676.	1.3	53
17	JARID2 Functions as a Tumor Suppressor in Myeloid Neoplasms by Repressing Self-Renewal in Hematopoietic Progenitor Cells. Cancer Cell, 2018, 34, 741-756.e8.	16.8	44
18	Cholesterol esterification inhibition and imatinib treatment synergistically inhibit growth of BCR-ABL mutation-independent resistant chronic myelogenous leukemia. PLoS ONE, 2017, 12, e0179558.	2.5	41

#	Article	IF	CITATIONS
19	A phase 2 study of simtuzumab in patients with primary, postâ€polycythaemia vera or postâ€essential thrombocythaemia myelofibrosis. British Journal of Haematology, 2017, 176, 939-949.	2.5	40
20	Splanchnic vein thrombosis in myeloproliferative neoplasms: pathophysiology and molecular mechanisms of disease. Therapeutic Advances in Hematology, 2017, 8, 107-118.	2.5	40
21	MOMENTUM: momelotinib vs danazol in patients with myelofibrosis previously treated with JAKi who are symptomatic and anemic. Future Oncology, 2021, 17, 1449-1458.	2.4	31
22	Retrospective analysis of pacritinib in patients with myelofibrosis and severe thrombocytopenia. Haematologica, 2022, 107, 1599-1607.	3.5	27
23	Historical Views, Conventional Approaches, and Evolving Management Strategies for Myeloproliferative Neoplasms. Journal of the National Comprehensive Cancer Network: JNCCN, 2015, 13, 424-434.	4.9	24
24	Distinct clinical, laboratory and molecular features of myeloproliferative neoplasm patients with splanchnic veinÂthrombosis. British Journal of Haematology, 2018, 183, 310-313.	2.5	24
25	Defining disease modification in myelofibrosis in the era of targeted therapy. Cancer, 2022, 128, 2420-2432.	4.1	24
26	Patient-Reported Outcomes Data From REVEAL at the Time of Enrollment (Baseline): A Prospective Observational Study of Patients With Polycythemia Vera in the United States. Clinical Lymphoma, Myeloma and Leukemia, 2018, 18, 590-596.	0.4	22
27	Identification of enhanced IFN-Î ³ signaling in polyarticular juvenile idiopathic arthritis with mass cytometry. JCI Insight, 2018, 3, .	5.0	22
28	Clinical Improvement with JAK2 Inhibition in Chuvash Polycythemia. New England Journal of Medicine, 2016, 375, 494-496.	27.0	21
29	Clinical and Disease Characteristics From REVEAL at Time of Enrollment (Baseline): Prospective Observational Study of Patients With Polycythemia Vera in the United States. Clinical Lymphoma, Myeloma and Leukemia, 2018, 18, 788-795.e2.	0.4	19
30	Analysis of Signaling Networks at the Single-Cell Level Using Mass Cytometry. Methods in Molecular Biology, 2017, 1636, 371-392.	0.9	19
31	A Novel Germline Variant in CSF3R Reduces N-Glycosylation and Exerts Potent Oncogenic Effects in Leukemia. Cancer Research, 2018, 78, 6762-6770.	0.9	17
32	A Humanized Animal Model Predicts Clonal Evolution and Therapeutic Vulnerabilities in Myeloproliferative Neoplasms. Cancer Discovery, 2021, 11, 3126-3141.	9.4	17
33	Identification of functionally primitive and immunophenotypically distinct subpopulations in secondary acute myeloid leukemia by mass cytometry. Cytometry Part B - Clinical Cytometry, 2019, 96, 46-56.	1.5	16
34	Treatment Patterns and Blood Counts in Patients With Polycythemia Vera Treated With Hydroxyurea in the United States: An Analysis From the REVEAL Study. Clinical Lymphoma, Myeloma and Leukemia, 2020, 20, 219-225.	0.4	13
35	A Phase 2 Study of the Safety and Efficacy of INCB050465, a Selective PI3Kδ Inhibitor, in Combination with Ruxolitinib in Patients with Myelofibrosis. Blood, 2018, 132, 353-353.	1.4	13
36	Robust Overall Survival and Sustained Efficacy Outcomes during Long Term Exposure to Momelotinib in JAK Inhibitor Na¬ve and Previously JAK Inhibitor Treated Intermediate/High Risk Myelofibrosis Patients. Blood, 2020, 136, 51-52.	1.4	12

#	Article	IF	CITATIONS
37	Pevonedistat targets malignant cells in myeloproliferative neoplasms <i>in vitro</i> and <i>in vivo</i> via NFκB pathway inhibition. Blood Advances, 2022, 6, 611-623.	5.2	11
38	Defining phenotypic and functional heterogeneity of glioblastoma stem cells by mass cytometry. JCI Insight, 2021, 6, .	5.0	10
39	Prognostication in Philadelphia Chromosome Negative Myeloproliferative Neoplasms: a Review of the Recent Literature. Current Hematologic Malignancy Reports, 2017, 12, 397-405.	2.3	9
40	Mass Cytometry Analysis Of Myelofibrosis and Secondary Acute Myeloid Leukemia Reveals Constitutive and Cytokine Induced Signaling Abnormalities With Differential Sensitivities To Ruxolitinib. Blood, 2013, 122, 1610-1610.	1.4	9
41	Prognostication in MF: From CBC to cytogenetics to molecular markers. Best Practice and Research in Clinical Haematology, 2014, 27, 155-164.	1.7	8
42	Hepcidin is elevated in primary and secondary myelofibrosis and remains elevated in patients treated with ruxolitinib. British Journal of Haematology, 2022, 197, .	2.5	8
43	Momelotinib reduces transfusion requirements in patients with myelofibrosis. Leukemia and Lymphoma, 2022, 63, 1718-1722.	1.3	8
44	Young versus old age at diagnosis confers distinct genomic profiles in patients with polycythemia vera. Leukemia, 2019, 33, 1522-1526.	7.2	7
45	Hepcidin Suppression By Momelotinib Is Associated with Increased Iron Availability and Erythropoiesis in Transfusion-Dependent Myelofibrosis Patients. Blood, 2018, 132, 4282-4282.	1.4	7
46	Identification of Novel LNK Mutations In Patients with Chronic Myeloproliferative Neoplasms and Related Disorders. Blood, 2010, 116, 315-315.	1.4	7
47	Toll-like receptor and cytokine expression throughout the bone marrow differs between patients with low- and high-risk myelodysplastic syndromes. Experimental Hematology, 2022, 110, 47-59.	0.4	7
48	Phase 2 Study of Ruxolitinib in Patients with Chronic Neutrophilic Leukemia or Atypical Chronic Myeloid Leukemia. Blood, 2018, 132, 350-350.	1.4	5
49	Impact of a 40-Gene Targeted Panel Test on Physician Decision Making for Patients With Acute Myeloid Leukemia. JCO Precision Oncology, 2021, 5, 191-203.	3.0	4
50	Hepcidin Is Elevated in Primary and Secondary Myelofibrosis and Correlates with IL-6 and IL-2Rα but Is High in Patients Treated with Ruxolitinib. Blood, 2018, 132, 1760-1760.	1.4	4
51	A Real-World Evaluation of the Association between Elevated Blood Counts and Thrombotic Events in Polycythemia Vera (Analysis of Data from the REVEAL Study). Blood, 2021, 138, 239-239.	1.4	4
52	Unraveling the Architecture of Classic Hodgkin Lymphoma One Cell at a Time. Cancer Discovery, 2020, 10, 342-344.	9.4	3
53	The JAK Inhibitor Ruxolitinib Elicits Hematologic and Symptomatic Improvement In Patients With Chuvash Polycythemia. Blood, 2013, 122, 4051-4051.	1.4	3
54	A Retrospective Head-to-Head Comparison between Pacritinib and Ruxolitinib in Patients with Myelofibrosis and Moderate to Severe Thrombocytopenia. Blood, 2021, 138, 3639-3639.	1.4	3

#	Article	IF	CITATIONS
55	A Phase 1/2 Study of INCB000928 As Monotherapy or in Combination with Ruxolitinib in Patients with Anemia Due to Myelofibrosis (INCB 00928-104). Blood, 2020, 136, 3-3.	1.4	3
56	Risk-adjusted safety analysis of pacritinib (PAC) in patients (pts) with myelofibrosis (MF) Journal of Clinical Oncology, 2022, 40, 7058-7058.	1.6	3
57	Antiangiogenic therapy in myelodysplastic syndromes: Is there a role?. Current Hematologic Malignancy Reports, 2008, 3, 10-18.	2.3	2
58	Altered Dynamics of Monocyte Subpopulations and Pro-Inflammatory Signaling Pathways in Polycythemia Vera Revealed By Mass Cytometry. Blood, 2019, 134, 4210-4210.	1.4	2
59	Single Cell Mass Cytometry Reveals Hyperactivated Signaling Networks in Myeloproliferative Neoplasms. Blood, 2014, 124, 1884-1884.	1.4	2
60	Subgroup Analysis from a Phase 2 Study of the Efficacy and Safety of Parsaclisib, a Selective PI3Kδ Inhibitor, in Combination with Ruxolitinib in Patients with Myelofibrosis (MF). Blood, 2021, 138, 3647-3647.	1.4	2
61	Imaging Mass Cytometry Reveals the Spatial Architecture of Myelodysplastic Syndromes and Secondary Acute Myeloid Leukemias. Blood, 2020, 136, 44-45.	1.4	2
62	Concurrent MPL W515L and Y591D mutations in a patient with myelofibrosis. Blood Cells, Molecules, and Diseases, 2016, 60, 1-2.	1.4	1
63	Identification of a Novel Splice Donor Mutation In the Thrombopoietin Gene In a Philippine Family with Hereditary Thrombocythemia. Blood, 2010, 116, 3086-3086.	1.4	1
64	Concomitant JAK2 V617F-Positive Polycythemia Vera and BCR-ABL-Positive Chronic Myelogenous Leukemia Treated with Ruxolitinib and Dasatinib Blood, 2012, 120, 2832-2832.	1.4	1
65	Single Cell Mass Cytometry of Dysregulated Signaling Networks in Myeloproliferative Neoplasms and Secondary Acute Myeloid Leukemia. Blood, 2012, 120, 703-703.	1.4	1
66	NF Kappa B Signaling Hyperactivation in Myelofibrosis and Secondary Acute Myeloid Leukemia. Blood, 2015, 126, 602-602.	1.4	1
67	Dynamic Changes in Clonal Clearance with Decitabine Therapy in AML and MDS Patients. Blood, 2015, 126, 689-689.	1.4	1
68	Examining the Clinical Features and Underlying Cardiovascular Risk Among Patients with Polycythemia Vera in the REVEAL Study. Blood, 2016, 128, 1934-1934.	1.4	1
69	Mass Cytometry Analysis of Dysregulated Cytokine Production and Intracellular Signaling in Myelofibrosis. Blood, 2016, 128, 4277-4277.	1.4	1
70	Clonal Evolution Revealed by Whole Genome Sequencing in a Case of Primary Myelofibrosis Transformed to Secondary Acute Myeloid Leukemia. Blood, 2012, 120, 706-706.	1.4	1
71	Distinct Clinical, Laboratory, and Molecular Features of Myeloproliferative Neoplasm Patients Presenting with Splanchnic Vein Thrombosis. Blood, 2016, 128, 3121-3121.	1.4	1
72	Molecular Analysis in the Pacritinib Dose-Finding PAC203 Study in Patients with Myelofibrosis Refractory or Intolerant to Ruxolitinib. Blood, 2019, 134, 4214-4214.	1.4	1

#	Article	IF	CITATIONS
73	Baseline Serum Ferritin Differentially Predicts W24 Transfusion Independence Response for Momelotinib and Ruxolitinib in Patients with Myelofibrosis. Blood, 2021, 138, 3638-3638.	1.4	1
74	DUSP6 Mediates Resistance to JAK2 Inhibition and Drives Myeloproliferative Neoplasm Disease Progression. Blood, 2021, 138, 55-55.	1.4	1
75	147â€Characterization of cell-bound complement activation products on SLE PBMCs using mass cytometry. , 2019, , .		0
76	Longitudinal and individual symptom analyses of momelotinib and ruxolitinib treated myelofibrosis patients from SIMPLIFY-1 Journal of Clinical Oncology, 2021, 39, e19040-e19040.	1.6	0
77	The CSF3R T618I Mutation Found In Chronic Neutrophilic Leukemia Removes An O-Linked Glycosylation Site and Increases Receptor Dimerization. Blood, 2013, 122, 270-270.	1.4	0
78	Clinical Significance of LNK (SH2B3) Expression in Pediatric B Cell Precursor Acute Lymphoblastic Leukemia. Blood, 2014, 124, 3772-3772.	1.4	0
79	A Phase 2 Study to Evaluate the Efficacy and Safety of Simtuzumab in Adult Subjects with Primary, Post Polycythemia Vera (PV) or Post Essential Thrombocythemia (ET) Myelofibrosis. Blood, 2015, 126, 2810-2810.	1.4	0
80	A Novel CSF3R Mutation Uncovers the Importance of Membrane-Proximal N-Glycosylation for Receptor Regulation. Blood, 2016, 128, 3141-3141.	1.4	0
81	Aberrant Cytokine Production in Myelofibrosis Is Not Rectified By Ruxolitinib and Is Differentially Sensitive to Inhibition of JAK/STAT, MAP Kinase, and NFI®B Signaling. Blood, 2018, 132, 3062-3062.	1.4	0
82	Young Versus Old Age at Diagnosis Confers Distinct Genomic Profiles in Patients with Polycythemia Vera. Blood, 2018, 132, 4322-4322.	1.4	0
83	Single-Cell Pathway Enrichment and Regulatory Profiling of Multiple Myeloma across Disease Stages. Blood, 2019, 134, 364-364.	1.4	0
84	Interrogating the Role of ASXL1 and JAK2 mutations in Myeloproliferative Neoplasms Utilizing Human Pluripotent Stem Cells. Blood, 2019, 134, 2971-2971.	1.4	0
85	Interrogating the Spatial Architecture of Human Bone Marrow Via Imaging Mass Cytometry. Blood, 2019, 134, 3728-3728.	1.4	0
86	Single-Cell RNA-Seq Analysis of CD138-Depleted Bone Marrow Samples Reveals Genetic Alterations and Disease Progression Correlate with Tumor and Bone Marrow Immune Microenvironment in the Mmrf Commpass Study. Blood, 2021, 138, 2691-2691.	1.4	0
87	Evidence of NF-ΚB Pathway Activation in Patients with Advanced, High Molecular Risk Myelofibrosis. Blood, 2021, 138, 3584-3584.	1.4	0
88	STEM-17. NOT ALL GBM STEM CELLS ARE EQUAL: IMPLICATIONS FOR RESEARCH AND THERAPY. Neuro-Oncology, 2020, 22, ii199-ii200.	1.2	0
89	CLO22-067: Symptom Burden in Patients With Myelofibrosis who Have Moderate or Severe Thrombocytopenia: A Retrospective Analysis of Patients Enrolled in the PERSIST-2 Study. Journal of the National Comprehensive Cancer Network: JNCCN, 2022, 20, CLO22-067.	4.9	0