Hans J Jansen

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6493343/publications.pdf

Version: 2024-02-01

#	Article	IF	CITATIONS
1	RNAseq Profiling of Leukocyte Populations in Zebrafish Larvae Reveals a cxcl11 Chemokine Gene as a Marker of Macrophage Polarization During Mycobacterial Infection. Frontiers in Immunology, 2019, 10, 832.	4.8	76

 $_2$ Deep transcriptome analysis of the heat shock response in an Atlantic sturgeon (Acipenser) Tj ETQq0 0 0 rgBT /Overlock 10 Tf 50 702 To $_{13}^{20}$

3	Rapid de novo assembly of the European eel genome from nanopore sequencing reads. Scientific Reports, 2017, 7, 7213.	3.3	104
4	De novo whole-genome assembly of a wild type yeast isolate using nanopore sequencing. F1000Research, 2017, 6, 618.	1.6	7
5	De novo whole-genome assembly of a wild type yeast isolate using nanopore sequencing. F1000Research, 2017, 6, 618.	1.6	5
6	MinION Analysis and Reference Consortium: Phase 2 data release and analysis of R9.0 chemistry. F1000Research, 2017, 6, 760.	1.6	107
7	Changes in ovarian gene expression profiles and plasma hormone levels in maturing European eel () Tj ETQq1 1 C 2016, 225, 185-196.).784314 ı 1.8	gBT /Overlo 19
8	MinION Analysis and Reference Consortium: Phase 1 data release and analysis. F1000Research, 2015, 4, 1075.	1.6	270
9	Testing Tuberculosis Drug Efficacy in a Zebrafish High-Throughput Translational Medicine Screen. Antimicrobial Agents and Chemotherapy, 2015, 59, 753-762.	3.2	52
10	A disruptive sequencer meets disruptive publishing. F1000Research, 2015, 4, 1074.	1.6	0
11	Advances in genomics of bony fish. Briefings in Functional Genomics, 2014, 13, 144-156.	2.7	24
12	RNA Sequencing of FACS-Sorted Immune Cell Populations from Zebrafish Infection Models to Identify Cell Specific Responses to Intracellular Pathogens. Methods in Molecular Biology, 2014, 1197, 261-274.	0.9	40
13	The king cobra genome reveals dynamic gene evolution and adaptation in the snake venom system. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 20651-20656.	7.1	412
14	Robotic injection of zebrafish embryos for high-throughput screening in disease models. Methods, 2013, 62, 246-254.	3.8	84
15	Deep RNA Sequencing of the Skeletal Muscle Transcriptome in Swimming Fish. PLoS ONE, 2013, 8, e53171.	2.5	62
16	Comparison of the Exomes of Common Carp (<i>Cyprinus carpio</i>) and Zebrafish (<i>Danio) Tj ETQq0 0 0 rgB</i>	T /Overloc	k 10 Tf 50

17	First draft genome sequence of the Japanese eel, Anguilla japonica. Gene, 2012, 511, 195-201.	2.2	99
18	Primitive Duplicate Hox Clusters in the European Eel's Genome. PLoS ONE, 2012, 7, e32231.	2.5	128

Hans J Jansen

#	Article	IF	CITATIONS
19	Scaffolding pre-assembled contigs using SSPACE. Bioinformatics, 2011, 27, 578-579.	4.1	2,214
20	Deep sequencing of the innate immune transcriptomic response of zebrafish embryos to Salmonella infection. Fish and Shellfish Immunology, 2011, 31, 716-724.	3.6	79
21	Identification of Common Carp Innate Immune Genes with Whole-Genome Sequencing and RNA-Seq Data. Journal of Integrative Bioinformatics, 2011, 8, 165-175.	1.5	23
22	Analyzing the function of a hox gene: An evolutionary approach. Development Growth and Differentiation, 2011, 53, 982-993.	1.5	8
23	XMeis3 Is Necessary for Mesodermal Hox Gene Expression and Function. PLoS ONE, 2011, 6, e18010.	2.5	4
24	Hox collinearity - a new perspective. International Journal of Developmental Biology, 2011, 55, 899-908.	0.6	31
25	Identification of common carp innate immune genes with whole-genome sequencing and RNA-Seq data. Journal of Integrative Bioinformatics, 2011, 8, 169.	1.5	12
26	Retinoid signalling is required for information transfer from mesoderm to neuroectoderm during gastrulation. International Journal of Developmental Biology, 2010, 54, 599-608.	0.6	23
27	The role of the Spemann organizer in anterior–posterior patterning of the trunk. Mechanisms of Development, 2007, 124, 668-681.	1.7	16
28	Extensive Polycistronism and Antisense Transcription in the Mammalian Hox Clusters. PLoS ONE, 2007, 2, e356.	2.5	78
29	Timed interactions between the Hox expressing non-organiser mesoderm and the Spemann organiser generate positional information during vertebrate gastrulation. Developmental Biology, 2004, 268, 207-219.	2.0	93
30	Biochemical differences between Three Subcell-lines Derived from SV40-Transformed Hamster Lens Cells. Experimental Eye Research, 1997, 64, 1037-1041.	2.6	2
31	In vivofootprinting and functional analysis of the human c-sis/PDGF B gene promoter provides evidence for two binding sites for transcriptional activators. Nucleic Acids Research, 1995, 23, 1119-1126.	14.5	17
32	Negative regulation of a special, double AP-1 consensus element in the vimentin promoter: Interference by the retinoic acid receptor. Journal of Cellular Physiology, 1995, 164, 85-92.	4.1	5
33	A novel humanc-sismRNA species is transcribed from a promoter inc-sisintron 1 and contains the code for an alternative PDGF B-like protein. Nucleic Acids Research, 1995, 23, 2815-2822.	14.5	7
34	Localization and functional analysis of DNase-I-hypersensitive sites in the human c-sis/PDGF-B gene transcription unit and its flanking regions. FEBS Journal, 1993, 211, 509-519.	0.2	16
35	DNase-I-hypersensitive sites located far upstream of the human c-sis/PDGF-B gene comap with transcriptional enhancers and a silencer and are preceded by (part of) a new transcription unit. FEBS Journal, 1993, 216, 487-495.	0.2	18
36	Identification of two silencers flanking an AP-1 enhancer in the vimentin promoter. Gene, 1992, 122, 337-343.	2.2	30