
Philip E Lewis

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6492701/publications.pdf Version: 2024-02-01

DHILLD F LEWIS

#	Article	IF	CITATIONS
1	Quantifying Vegetation Biophysical Variables from Imaging Spectroscopy Data: A Review on Retrieval Methods. Surveys in Geophysics, 2019, 40, 589-629.	4.6	265
2	Assimilation of remote sensing into crop growth models: Current status and perspectives. Agricultural and Forest Meteorology, 2019, 276-277, 107609.	4.8	182
3	Evaluation of regional estimates of winter wheat yield by assimilating three remotely sensed reflectance datasets into the coupled WOFOST–PROSAIL model. European Journal of Agronomy, 2019, 102, 1-13.	4.1	111
4	Strong constraint on modelled global carbon uptake using solar-induced chlorophyll fluorescence data. Scientific Reports, 2018, 8, 1973.	3.3	69
5	Decoupling Canopy Structure and Leaf Biochemistry: Testing the Utility of Directional Area Scattering Factor (DASF). Remote Sensing, 2018, 10, 1911.	4.0	7
6	Land Surface Processes Analysis Using Sentinel-3 OLCI and Modis Data. , 2018, , .		0
7	Realistic Forest Stand Reconstruction from Terrestrial LiDAR for Radiative Transfer Modelling. Remote Sensing, 2018, 10, 933.	4.0	94
8	Estimation of FAPAR over Croplands Using MISR Data and the Earth Observation Land Data Assimilation System (EO-LDAS). Remote Sensing, 2017, 9, 656.	4.0	17
9	A New Global fAPAR and LAI Dataset Derived from Optimal Albedo Estimates: Comparison with MODIS Products. Remote Sensing, 2016, 8, 275.	4.0	34
10	Efficient Emulation of Radiative Transfer Codes Using Gaussian Processes and Application to Land Surface Parameter Inferences. Remote Sensing, 2016, 8, 119.	4.0	76
11	Waveform lidar over vegetation: An evaluation of inversion methods for estimating return energy. Remote Sensing of Environment, 2015, 164, 208-224.	11.0	60
12	The fourth phase of the radiative transfer model intercomparison (RAMI) exercise: Actual canopy scenarios and conformity testing. Remote Sensing of Environment, 2015, 169, 418-437.	11.0	170
13	Developing a dual-wavelength full-waveform terrestrial laser scanner to characterize forest canopy structure. Agricultural and Forest Meteorology, 2014, 198-199, 7-14.	4.8	100
14	Investigating assumptions of crown archetypes for modelling LiDAR returns. Remote Sensing of Environment, 2013, 134, 39-49.	11.0	35
15	Direct retrieval of canopy gap probability using airborne waveform lidar. Remote Sensing of Environment, 2013, 134, 24-38.	11.0	102
16	Reply to Townsend et al.: Decoupling contributions from canopy structure and leaf optics is critical for remote sensing leaf biochemistry. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, E1075.	7.1	12
17	Hyperspectral remote sensing of foliar nitrogen content. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, E185-92.	7.1	389
18	Reply to Ollinger et al.: Remote sensing of leaf nitrogen and emergent ecosystem properties. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, E2438.	7.1	11

Philip E Lewis

#	Article	IF	CITATIONS
19	Fast Automatic Precision Tree Models from Terrestrial Laser Scanner Data. Remote Sensing, 2013, 5, 491-520.	4.0	528
20	An Earth Observation Land Data Assimilation System (EO-LDAS). Remote Sensing of Environment, 2012, 120, 219-235.	11.0	87
21	Retrieval and global assessment of terrestrial chlorophyll fluorescence from GOSAT space measurements. Remote Sensing of Environment, 2012, 121, 236-251.	11.0	436
22	Measuring forests with dual wavelength lidar: A simulation study over topography. Agricultural and Forest Meteorology, 2012, 161, 123-133.	4.8	50
23	A threshold insensitive method for locating the forest canopy top with waveform lidar. Remote Sensing of Environment, 2011, 115, 3286-3297.	11.0	33
24	An assessment of the MODIS collection 5 leaf area index product for a region of mixed coniferous forest. Remote Sensing of Environment, 2011, 115, 767-780.	11.0	173
25	Retrieval of canopy height using moderate-resolution imaging spectroradiometer (MODIS) data. Remote Sensing of Environment, 2011, 115, 1595-1601.	11.0	44
26	3D radiative transfer modelling of fire impacts on a two-layer savanna system. Remote Sensing of Environment, 2011, 115, 1866-1881.	11.0	54
27	Temporal Constraints on Linear BRDF Model Parameters. IEEE Transactions on Geoscience and Remote Sensing, 2010, 48, 2445-2450.	6.3	37
28	Assessing the coupling between surface albedo derived from MODIS and the fraction of diffuse skylight over spatially-characterized landscapes. Remote Sensing of Environment, 2010, 114, 738-760.	11.0	204
29	Simulating the impact of discrete-return lidar system and survey characteristics over young conifer and broadleaf forests. Remote Sensing of Environment, 2010, 114, 1546-1560.	11.0	115
30	Quantifying Surface Reflectivity for Spaceborne Lidar via Two Independent Methods. IEEE Transactions on Geoscience and Remote Sensing, 2009, 47, 3262-3271.	6.3	33
31	Upscaling as ecological information transfer: a simple framework with application to Arctic ecosystem carbon exchange. Landscape Ecology, 2009, 24, 971-986.	4.2	34
32	Assimilating canopy reflectance data into an ecosystem model with an Ensemble Kalman Filter. Remote Sensing of Environment, 2008, 112, 1347-1364.	11.0	123
33	The RAMI On-line Model Checker (ROMC): A web-based benchmarking facility for canopy reflectance models. Remote Sensing of Environment, 2008, 112, 1144-1150.	11.0	85
34	Multi-temporal MODIS–Landsat data fusion for relative radiometric normalization, gap filling, and prediction of Landsat data. Remote Sensing of Environment, 2008, 112, 3112-3130.	11.0	430
35	Using Satellite Observations in Regional Scale Calculations of Carbon Exchange. Ecological Studies, 2008, , 309-339.	1.2	0
36	Canopy spectral invariants for remote sensing and model applications. Remote Sensing of Environment, 2007, 106, 106-122.	11.0	129

PHILIP E LEWIS

#	Article	IF	CITATIONS
37	Spectral invariants and scattering across multiple scales from within-leaf to canopy. Remote Sensing of Environment, 2007, 109, 196-206.	11.0	124
38	Can we measure terrestrial photosynthesis from space directly, using spectral reflectance and fluorescence?. Global Change Biology, 2007, 13, 1484-1497.	9.5	224
39	3D modelling of forest canopy structure for remote sensing simulations in the optical and microwave domains. Remote Sensing of Environment, 2006, 100, 114-132.	11.0	144
40	The Global Impact of Clouds on the Production of MODIS Bidirectional Reflectance Model-Based Composites for Terrestrial Monitoring. IEEE Geoscience and Remote Sensing Letters, 2006, 3, 452-456.	3.1	77
41	Prototyping a global algorithm for systematic fire-affected area mapping using MODIS time series data. Remote Sensing of Environment, 2005, 97, 137-162.	11.0	439
42	Burned area mapping using multi-temporal moderate spatial resolution data—a bi-directional reflectance model-based expectation approach. Remote Sensing of Environment, 2002, 83, 263-286.	11.0	294
43	First operational BRDF, albedo nadir reflectance products from MODIS. Remote Sensing of Environment, 2002, 83, 135-148.	11.0	2,022
44	On the potential of CHRIS/PROBA for estimating vegetation canopy properties from space. International Journal of Remote Sensing, 2000, 19, 171-189.	1.0	25
45	Geostatistical classification for remote sensing: an introduction. Computers and Geosciences, 2000, 26, 361-371.	4.2	245
46	Monte Carlo ray tracing in optical canopy reflectance modelling. International Journal of Remote Sensing, 2000, 18, 163-196.	1.0	117
47	Deriving albedo maps for HAPEX-Sahel from ASAS data using kernel-driven BRDF models. Hydrology and Earth System Sciences, 1999, 3, 1-11.	4.9	24
48	Three-dimensional plant modelling for remote sensing simulation studies using the Botanical Plant Modelling System. Agronomy for Sustainable Development, 1999, 19, 185-210.	0.8	96
49	Investigation of the Utility of Spectral Vegetation Indices for Determining Information on Coniferous Forests. Remote Sensing of Environment, 1998, 66, 250-272.	11.0	109
50	The Moderate Resolution Imaging Spectroradiometer (MODIS): land remote sensing for global change research. IEEE Transactions on Geoscience and Remote Sensing, 1998, 36, 1228-1249.	6.3	1,178
51	A parametric radiative transfer model for sky radiance distribution. Journal of Quantitative Spectroscopy and Radiative Transfer, 1996, 55, 181-189.	2.3	14
52	Topographic effects in AVHRR NDVI data. Remote Sensing of Environment, 1995, 54, 223-232.	11.0	47