David Neuhaus

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6492542/publications.pdf

Version: 2024-02-01

279798 395702 2,803 33 23 33 citations h-index g-index papers 39 39 39 2622 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Solution structure of the DMA-binding domain of the oestrogen receptor. Nature, 1990, 348, 458-461.	27.8	478
2	Systematic application of high-resolution, phase-sensitive two-dimensional 1H-NMR techniques for the identification of the amino-acid-proton spin systems in proteins. Rabbit metallothionein-2. FEBS Journal, 1985, 151, 257-273.	0.2	286
3	Structural Basis of Detection and Signaling of DNA Single-Strand Breaks by Human PARP-1. Molecular Cell, 2015, 60, 742-754.	9.7	245
4	Nuclear magnetic resonance identification of "half-turn―and 310-helix secondary structure in rabbit liver metallothionein-2. Journal of Molecular Biology, 1986, 187, 131-135.	4.2	198
5	HPF1 completes the PARP active site for DNA damage-induced ADP-ribosylation. Nature, 2020, 579, 598-602.	27.8	172
6	Polypeptide-metal cluster connectivities in metallothionein 2 by novel proton-cadmium-113 heteronuclear two-dimensional NMR experiments. Journal of the American Chemical Society, 1985, 107, 6847-6851.	13.7	165
7	Structural consequences of disease-causing mutations in the ATRX-DNMT3-DNMT3L (ADD) domain of the chromatin-associated protein ATRX. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104, 11939-11944.	7.1	138
8	The DNA-Binding Domain of Human PARP-1 Interacts with DNA Single-Strand Breaks as a Monomer through Its Second Zinc Finger. Journal of Molecular Biology, 2011, 407, 149-170.	4.2	138
9	Treatment of NOE constraints involving equivalent or nonstereoassigned protons in calculations of biomacromolecular structures. Journal of Biomolecular NMR, 1996, 8, 292-310.	2.8	129
10	The solution structure and dynamics of the DNA-binding domain of HMG-D from Drosophila melanogaster. Structure, 1994, 2, 609-627.	3.3	120
11	Solution structures of the two PBZ domains from human APLF and their interaction with poly(ADP-ribose). Nature Structural and Molecular Biology, 2010, 17, 241-243.	8.2	89
12	Sequence-specific 1H-NMR assignments in rabbit-liver metallothionein-2. FEBS Journal, 1986, 157, 275-289.	0.2	59
13	Structure of the F1-binding Domain of the Stator of Bovine F1Fo-ATPase and How it Binds an α-Subunit. Journal of Molecular Biology, 2005, 351, 824-838.	4.2	59
14	Intracellular antibody signalling is regulated by phosphorylation of the Fc receptor TRIM21. ELife, 2018, 7, .	6.0	57
15	113Cd-1H spin-spin couplings in homonuclear 1H correlated spectroscopy of metallothionein. Identification of the cysteine 1H spin systems. FEBS Journal, 1984, 143, 659-667.	0.2	55
16	The solution structure of the first zinc finger domain of SWI5: a novel structural extension to a common fold. Structure, 1996, 4, 599-611.	3.3	41
17	Temporal Ordering in Endocytic Clathrin-Coated Vesicle Formation via AP2 Phosphorylation. Developmental Cell, 2019, 50, 494-508.e11.	7.0	40
18	A tri-ionic anchor mechanism drives Ube2N-specific recruitment and K63-chain ubiquitination in TRIM ligases. Nature Communications, 2019, 10, 4502.	12.8	32

#	Article	IF	CITATIONS
19	How the N-terminal Domain of the OSCP Subunit of Bovine F1Fo-ATP Synthase Interacts with the N-terminal Region of an Alpha Subunit. Journal of Molecular Biology, 2007, 368, 310-318.	4.2	30
20	Dynamics of the HD regulatory subdomain of PARP-1; substrate access and allostery in PARP activation and inhibition. Nucleic Acids Research, 2021, 49, 2266-2288.	14.5	30
21	Solution Structure and DNA Binding of the Zinc-finger Domain from DNA Ligase IIIα. Journal of Molecular Biology, 2004, 341, 723-738.	4.2	29
22	RING domains act as both substrate and enzyme in a catalytic arrangement to drive self-anchored ubiquitination. Nature Communications, 2021, 12, 1220.	12.8	26
23	Determination of the NMR structure of the complex between U1A protein and its RNA polyadenylation inhibition element. Journal of Biomolecular NMR, 1998, 11, 59-84.	2.8	25
24	DNA-dependent SUMO modification of PARP-1. DNA Repair, 2013, 12, 761-773.	2.8	24
25	Solution Structure of Subunit F6 from the Peripheral Stalk Region of ATP Synthase from Bovine Heart Mitochondria. Journal of Molecular Biology, 2004, 342, 593-603.	4.2	23
26	Homeodomain-like DNA binding proteins control the haploid-to-diploid transition in <i>Dictyostelium</i> . Science Advances, 2017, 3, e1602937.	10.3	21
27	Mechanism and evolution of the Zn-fingernail required for interaction of VARP with VPS29. Nature Communications, 2020, 11, 5031.	12.8	21
28	HMG-D complexed to a bulge DNA: An NMR model. Protein Science, 2001, 10, 504-518.	7.6	19
29	Molecular mechanisms underlying the role of the centriolar CEP164-TTBK2 complex in ciliopathies. Structure, 2022, 30, 114-128.e9.	3.3	11
30	Zinc finger structure determination by NMR: Why zinc fingers can be a handful. Progress in Nuclear Magnetic Resonance Spectroscopy, 2022, 130-131, 62-105.	7.5	11
31	¹¹³ Cdâ€NMR Experiments Reveal an Unusual Metal Cluster in the Solution Structure of the Yeast Splicing Protein Bud31p. Angewandte Chemie - International Edition, 2015, 54, 4861-4864.	13.8	9
32	¹¹³ Cdâ€NMR Experiments Reveal an Unusual Metal Cluster in the Solution Structure of the Yeast Splicing Protein Bud31p. Angewandte Chemie, 2015, 127, 4943-4946.	2.0	2
33	Early heteronuclear NMR studies with rabbit liver metallothionein MT2. Magnetic Resonance in Chemistry, 2003, 41, S70-S79.	1.9	1