Laurent Nguyen

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6491871/publications.pdf Version: 2024-02-01

LAUDENT NOUVEN

#	Article	IF	CITATIONS
1	Molecular Analysis of Axonal Transport Dynamics upon Modulation of Microtubule Acetylation. Methods in Molecular Biology, 2022, 2431, 207-224.	0.9	2
2	E3 ubiquitin ligases and cerebral cortex development in health and disease. Developmental Neurobiology, 2022, , .	3.0	0
3	Oligodendrocyte precursors guide interneuron migration by unidirectional contact repulsion. Science, 2022, 376, eabn6204.	12.6	16
4	Learning about cell lineage, cellular diversity and evolution of the human brain through stem cell models. Current Opinion in Neurobiology, 2021, 66, 166-177.	4.2	5
5	Mechanical Forces Orchestrate Brain Development. Trends in Neurosciences, 2021, 44, 110-121.	8.6	29
6	Loss of tRNA-modifying enzyme Elp3 activates a p53-dependent antitumor checkpoint in hematopoiesis. Journal of Experimental Medicine, 2021, 218, .	8.5	14
7	Recent African strains of Zika virus display higher transmissibility and fetal pathogenicity than Asian strains. Nature Communications, 2021, 12, 916.	12.8	80
8	Coordination between Transport and Local Translation in Neurons. Trends in Cell Biology, 2021, 31, 372-386.	7.9	14
9	p27 controls autophagic vesicle trafficking in glucose-deprived cells via the regulation of ATAT1-mediated microtubule acetylation. Cell Death and Disease, 2021, 12, 481.	6.3	63
10	Time lapse recording of cortical interneuron migration in mouse organotypic brain slices and explants. STAR Protocols, 2021, 2, 100467.	1.2	6
11	Voluntary alcohol bingeâ€drinking in adolescent C57Bl6 mice induces delayed appearance of behavioural defects in both males and females. Addiction Biology, 2021, , e13102.	2.6	13
12	ATP-citrate lyase promotes axonal transport across species. Nature Communications, 2021, 12, 5878.	12.8	11
13	Classics never get old: neurotransmitters shape human cortical interneuron migration. EMBO Journal, 2021, 40, e109935.	7.8	1
14	Ex Vivo Recording of Axonal Transport Dynamics on Postnatal Organotypic Cortical Slices. STAR Protocols, 2020, 1, 100131.	1.2	2
15	A clinical and histopathological study of malformations observed in fetuses infected by the Zika virus. Brain Pathology, 2019, 29, 114-125.	4.1	19
16	Zika virus differentially infects human neural progenitor cells according to their state of differentiation and dysregulates neurogenesis through the Notch pathway. Emerging Microbes and Infections, 2019, 8, 1003-1016.	6.5	64
17	Proteostasis is essential during cochlear development for neuron survival and hair cell polarity. EMBO Reports, 2019, 20, e47097.	4.5	14
18	Temporal patterning of apical progenitors and their daughter neurons in the developing neocortex. Science, 2019, 364, .	12.6	275

LAURENT NGUYEN

#	Article	IF	CITATIONS
19	Cell migration promotes dynamic cellular interactions to control cerebral cortex morphogenesis. Nature Reviews Neuroscience, 2019, 20, 318-329.	10.2	88
20	The Unfolded Protein Response: A Key Player in Zika Virus-Associated Congenital Microcephaly. Frontiers in Cellular Neuroscience, 2019, 13, 94.	3.7	25
21	ATAT1-enriched vesicles promote microtubule acetylation via axonal transport. Science Advances, 2019, 5, eaax2705.	10.3	42
22	Cell-Intrinsic Control of Interneuron Migration Drives Cortical Morphogenesis. Cell, 2018, 172, 1063-1078.e19.	28.9	48
23	Cortical progenitor biology: key features mediating proliferation versus differentiation. Journal of Neurochemistry, 2018, 146, 500-525.	3.9	77
24	Elongator subunit 3 (ELP3) modifies ALS through tRNA modification. Human Molecular Genetics, 2018, 27, 1276-1289.	2.9	56
25	Stress-induced unfolded protein response contributes to Zika virus–associated microcephaly. Nature Neuroscience, 2018, 21, 63-71.	14.8	106
26	A yellow fever–Zika chimeric virus vaccine candidate protects against Zika infection and congenital malformations in mice. Npj Vaccines, 2018, 3, 56.	6.0	41
27	p27Kip1 Modulates Axonal Transport by Regulating α-Tubulin Acetyltransferase 1 Stability. Cell Reports, 2018, 23, 2429-2442.	6.4	30
28	Importin-8 Modulates Division of Apical Progenitors, Dendritogenesis and Tangential Migration During Development of Mouse Cortex. Frontiers in Molecular Neuroscience, 2018, 11, 234.	2.9	1
29	Genetic and pharmacological inhibition of Cdk1 provides neuroprotection towards ischemic neuronal death. Cell Death Discovery, 2018, 4, 43.	4.7	16
30	Lessons learnt from the emergence of Zika virus. Nature Microbiology, 2018, 3, 966-968.	13.3	2
31	Cerebral Cortical Circuitry Formation Requires Functional Glycine Receptors. Cerebral Cortex, 2017, 27, bhw025.	2.9	26
32	Cerebral cortex development: an outsideâ€in perspective. FEBS Letters, 2017, 591, 3978-3992.	2.8	75
33	Loss of Elp3 Impairs the Acetylation and Distribution of Connexin-43 in the Developing Cerebral Cortex. Frontiers in Cellular Neuroscience, 2017, 11, 122.	3.7	15
34	Emerging Roles for the Unfolded Protein Response in the Developing Nervous System. Trends in Neurosciences, 2016, 39, 394-404.	8.6	60
35	Elongator controls cortical interneuron migration by regulating actomyosin dynamics. Cell Research, 2016, 26, 1131-1148.	12.0	37
36	Mutations in the HECT domain of NEDD4L lead to AKT–mTOR pathway deregulation and cause periventricular nodular heterotopia. Nature Genetics, 2016, 48, 1349-1358.	21.4	101

LAURENT NGUYEN

#	Article	IF	CITATIONS
37	Elp3 links tRNA modification to IRES-dependent translation of LEF1 to sustain metastasis in breast cancer. Journal of Experimental Medicine, 2016, 213, 2503-2523.	8.5	128
38	Realâ€ŧime Recordings of Migrating Cortical Neurons from GFP and Cre Recombinase Expressing Mice. Current Protocols in Neuroscience, 2016, 74, 3.29.1-3.29.23.	2.6	8
39	Neural Stem Cells to Cerebral Cortex: Emerging Mechanisms Regulating Progenitor Behavior and Productivity. Journal of Neuroscience, 2016, 36, 11394-11401.	3.6	67
40	Dopaminergic neurons differentiating from LRRK2 G2019S induced pluripotent stem cells show early neuritic branching defects. Scientific Reports, 2016, 6, 33377.	3.3	54
41	A Dynamic Unfolded Protein Response Contributes to the Control of Cortical Neurogenesis. Developmental Cell, 2015, 35, 553-567.	7.0	169
42	Progenitor genealogy in the developing cerebral cortex. Cell and Tissue Research, 2015, 359, 17-32.	2.9	23
43	Glycine receptors control the generation of projection neurons in the developing cerebral cortex. Cell Death and Differentiation, 2014, 21, 1696-1708.	11.2	33
44	MicroRNA Targeting of CoREST Controls Polarization of Migrating Cortical Neurons. Cell Reports, 2014, 7, 1168-1183.	6.4	65
45	Glycine Receptor α2 Subunit Activation Promotes Cortical Interneuron Migration. Cell Reports, 2013, 4, 738-750.	6.4	74
46	p27Kip1 Is a Microtubule-Associated Protein that Promotes Microtubule Polymerization during Neuron Migration. Developmental Cell, 2012, 23, 729-744.	7.0	97
47	Elongator – an emerging role in neurological disorders. Trends in Molecular Medicine, 2010, 16, 1-6.	6.7	52
48	Huntingtin Is Required for Mitotic Spindle Orientation and Mammalian Neurogenesis. Neuron, 2010, 67, 392-406.	8.1	240
49	Molecular layers underlying cytoskeletal remodelling during cortical development. Trends in Neurosciences, 2010, 33, 38-47.	8.6	99
50	EFHC1 interacts with microtubules to regulate cell division and cortical development. Nature Neuroscience, 2009, 12, 1266-1274.	14.8	68
51	Elongator Controls the Migration and Differentiation of Cortical Neurons through Acetylation of α-Tubulin. Cell, 2009, 136, 551-564.	28.9	688
52	Proneural bHLH and Brn Proteins Coregulate a Neurogenic Program through Cooperative Binding to a Conserved DNA Motif. Developmental Cell, 2006, 11, 831-844.	7.0	267
53	Coupling Cell Cycle Exit, Neuronal Differentiation and Migration in Cortical Neurogenesis. Cell Cycle, 2006, 5, 2314-2318.	2.6	96
54	p27 ^{kip1} independently promotes neuronal differentiation and migration in the cerebral cortex. Genes and Development, 2006, 20, 1511-1524.	5.9	320

#	Article	IF	CITATIONS
55	Autocrine/Paracrine Activation of the GABA _A Receptor Inhibits the Proliferation of Neurogenic Polysialylated Neural Cell Adhesion Molecule-Positive (PSA-NCAM ⁺) Precursor Cells from Postnatal Striatum. Journal of Neuroscience, 2003, 23, 3278-3294.	3.6	137
56	Neurotransmitters as early signals for central nervous system development. Cell and Tissue Research, 2001, 305, 187-202.	2.9	335