Joseph Richard Pawlik

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6491643/publications.pdf

Version: 2024-02-01

112 papers 6,552 citations

47006 47 h-index 77 g-index

119 all docs

119 docs citations

119 times ranked

4777 citing authors

#	Article	IF	CITATIONS
1	The habitat function of mangroves for terrestrial and marine fauna: A review. Aquatic Botany, 2008, 89, 155-185.	1.6	1,037
2	Marine invertebrate chemical defenses. Chemical Reviews, 1993, 93, 1911-1922.	47.7	368
3	The HMA-LMA Dichotomy Revisited: an Electron Microscopical Survey of 56 Sponge Species. Biological Bulletin, 2014, 227, 78-88.	1.8	188
4	The Chemical Ecology of Sponges on Caribbean Reefs: Natural Products Shape Natural Systems. BioScience, 2011, 61, 888-898.	4.9	158
5	Multiple defensive roles for triterpene glycosides from two Caribbean sponges. Oecologia, 2002, 131, 125-136.	2.0	144
6	Chemical defenses and resource trade-offs structure sponge communities on Caribbean coral reefs. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 4151-4156.	7.1	130
7	Redwood of the reef: growth and age of the giant barrel sponge Xestospongia muta in the Florida Keys. Marine Biology, 2008, 155, 159-171.	1.5	129
8	Defensive chemicals of the Spanisch dancer nudibranch Hexabranchus sanguineus and its egg ribbons: macrolides derived from a sponge diet. Journal of Experimental Marine Biology and Ecology, 1988, 119, 99-109.	1.5	126
9	Seaweed-herbivore-predator interactions: host-plant specialization reduces predation on small herbivores. Oecologia, 1989, 81, 418-427.	2.0	122
10	Anti-predatory chemical defenses of ascidians: secondary metabolites or inorganic acids?. Journal of Experimental Marine Biology and Ecology, 2002, 270, 203-214.	1.5	111
11	Settlement of a marine tube worm as a function of current velocity: Interacting effects of hydrodynamics and behavior ¹ . Limnology and Oceanography, 1993, 38, 1730-1740.	3.1	106
12	Indirect effects of overfishing on Caribbean reefs: sponges overgrow reef-building corals. PeerJ, 2015, 3, e901.	2.0	102
13	Cyanobacterial Diversity and a New Acaryochloris-Like Symbiont from Bahamian Sea-Squirts. PLoS ONE, 2011, 6, e23938.	2.5	101
14	Bleaching and stress in coral reef ecosystems: <i>hsp70</i> expression by the giant barrel sponge <i>Xestospongia muta</i> Molecular Ecology, 2008, 17, 1840-1849.	3.9	99
15	A new antifouling assay method: results from field experiments using extracts of four marine organisms. Journal of Experimental Marine Biology and Ecology, 1995, 194, 157-165.	1.5	95
16	Patterns of chemical defense among Caribbean gorgonian corals: a preliminary survey. Journal of Experimental Marine Biology and Ecology, 1987, 108, 55-66.	1.5	92
17	A Vicious Circle? Altered Carbon and Nutrient Cycling May Explain the Low Resilience of Caribbean Coral Reefs. BioScience, 2016, 66, 470-476.	4.9	90
18	Demographics of increasing populations of the giant barrel sponge Xestospongia muta in the Florida Keys. Ecology, 2010, 91, 560-570.	3.2	88

#	Article	IF	CITATIONS
19	Chemical defense of the Caribbean sponge Agelas clathrodes (Schmidt). Journal of Experimental Marine Biology and Ecology, 1997, 208, 185-196.	1.5	87
20	Coral reef sponges: Do predatory fishes affect their distribution?. Limnology and Oceanography, 1998, 43, 1396-1399.	3.1	87
21	Evidence for Vertical Transmission of Bacterial Symbionts from Adult to Embryo in the Caribbean Sponge <i>Svenzea zeai</i> . Applied and Environmental Microbiology, 2009, 75, 6147-6156.	3.1	86
22	Nutrient Fluxes and Ecological Functions of Coral Reef Sponges in a Changing Ocean., 2017,, 373-410.		82
23	Habitat use by sponge-dwelling brittlestars. Marine Biology, 2005, 146, 301-313.	1.5	81
24	Does the odor from sponges of the genus Ircinia protect them from fish predators?. Journal of Chemical Ecology, 2002, 28, 1103-1115.	1.8	78
25	The Emerging Ecological and Biogeochemical Importance of Sponges on Coral Reefs. Annual Review of Marine Science, 2020, 12, 315-337.	11.6	76
26	Amphitoxin, a New High Molecular Weight Antifeedant Pyridinium Salt from the Caribbean Sponge Amphimedon compressa. Journal of Natural Products, 1995, 58, 647-652.	3.0	75
27	Winogradskyella poriferorum sp. nov., a novel member of the family Flavobacteriaceae isolated from a sponge in the Bahamas. International Journal of Systematic and Evolutionary Microbiology, 2005, 55, 1589-1592.	1.7	75
28	Chemical warfare on coral reefs: Sponge metabolites differentially affect coral symbiosis in situ. Limnology and Oceanography, 2007, 52, 907-911.	3.1	75
29	Title is missing!. Journal of Chemical Ecology, 2000, 26, 1477-1496.	1.8	74
30	Effects of Sponge Bleaching on Ammonia-Oxidizing Archaea: Distribution and Relative Expression of Ammonia Monooxygenase Genes Associated with the Barrel Sponge Xestospongia muta. Microbial Ecology, 2010, 60, 561-571.	2.8	72
31	Does the skeleton of a sponge provide a defense against predatory reef fish?. Oecologia, 1996, 107, 225-231.	2.0	64
32	Genetic structure of the Caribbean giant barrel sponge Xestospongia muta using the I3-M11 partition of COI. Coral Reefs, 2009, 28, 157-165.	2.2	63
33	Presence of <i>Aspergillus sydowii</i> , a pathogen of gorgonian sea fans in the marine sponge <i>Spongia obscura</i> . ISME Journal, 2009, 3, 752-755.	9.8	63
34	Sponge Communities on Caribbean Coral Reefs Are Structured by Factors That Are Top-Down, Not Bottom-Up. PLoS ONE, 2013, 8, e62573.	2,5	63
35	Description of Fabibacter halotolerans gen. nov., sp. nov. and Roseivirga spongicola sp. nov., and reclassification of [Marinicola] seohaensis as Roseivirga seohaensis comb. nov International Journal of Systematic and Evolutionary Microbiology, 2006, 56, 1059-1065.	1.7	62
36	Specific free fatty acids induce larval settlement and metamorphosis of the reef-building tube worm Phragmatopoma califomica (Fewkes). Journal of Experimental Marine Biology and Ecology, 1986, 102, 301-310.	1.5	61

#	Article	IF	CITATIONS
37	Chemical Defense of the Caribbean Reef Sponge Axinella corrugata Against Predatory Fishes. Journal of Chemical Ecology, 1999, 25, 2811-2823.	1.8	61
38	The pathology of sponge orange band disease affecting the Caribbean barrel sponge Xestospongia muta. FEMS Microbiology Ecology, 2011, 75, 218-230.	2.7	61
39	Spongivory by Parrotfish in Florida Mangrove and Reef Habitats. Marine Ecology, 1998, 19, 325-337.	1.1	60
40	Evidence of a resource trade-off between growth and chemical defenses among Caribbean coral reef sponges. Marine Ecology - Progress Series, 2010, 406, 71-78.	1.9	59
41	The Role of Vanadium in the Chemical Defense of the Solitary Tunicate, Phallusia nigra. Journal of Chemical Ecology, 2007, 33, 643-654.	1.8	58
42	Trait-mediated ecosystem impacts: how morphology and size affect pumping rates of the Caribbean giant barrel sponge. Aquatic Biology, 2014, 23, 1-13.	1.4	58
43	Selective feeding by the giant barrel sponge enhances foraging efficiency. Limnology and Oceanography, 2016, 61, 1271-1286.	3.1	58
44	Testing for defensive synergy in Caribbean sponges: Bad taste or glass spicules?. Journal of Experimental Marine Biology and Ecology, 2005, 322, 67-81.	1.5	57
45	Is There a Trade-Off Between Wound-Healing and Chemical Defenses Among Caribbean Reef Sponges?. Integrative and Comparative Biology, 2005, 45, 352-358.	2.0	56
46	Bioactive Metabolites from the Caribbean SpongeAka coralliphagum. Journal of Natural Products, 2007, 70, 504-509.	3.0	53
47	A review of evidence for food limitation of sponges on Caribbean reefs. Marine Ecology - Progress Series, 2015, 519, 265-283.	1.9	52
48	A Sponge-Eating Worm from Bermuda: Branchiosyllis oculata (Polychaeta, Syllidae),â€. Marine Ecology, 1983, 4, 65-79.	1.1	49
49	Population dynamics of giant barrel sponges on Florida coral reefs. Journal of Experimental Marine Biology and Ecology, 2015, 473, 73-80.	1.5	47
50	Patterns of sponge recruitment and growth on a shipwreck corroborate chemical defense resource trade-off. Marine Ecology - Progress Series, 2008, 368, 137-143.	1.9	47
51	A review of bottom-up vs. top-down control of sponges on Caribbean fore-reefs: what's old, what's new, and future directions. PeerJ, 2018, 6, e4343.	2.0	47
52	Antipredatory Defensive Roles of Natural Products from Marine Invertebrates., 2012,, 677-710.		45
53	Sponge orange band (SOB): a pathogenic-like condition of the giant barrel sponge, Xestospongia muta. Coral Reefs, 2006, 25, 513-513.	2.2	43
54	Larval settlement and metamorphosis of two gregarious sabellariid polychaetes: <i>Sabellaria alveolata</i> compared with <i>Phragmatopoma californica</i> . Journal of the Marine Biological Association of the United Kingdom, 1988, 68, 101-124.	0.8	42

#	Article	IF	CITATIONS
55	Bitten down to size: Fish predation determines growth form of the Caribbean coral reef sponge Mycale laevis. Journal of Experimental Marine Biology and Ecology, 2009, 374, 45-50.	1.5	40
56	Stenothermobacter spongiae gen. nov., sp. nov., a novel member of the family Flavobacteriaceae isolated from a marine sponge in the Bahamas, and emended description of Nonlabens tegetincola. International Journal of Systematic and Evolutionary Microbiology, 2006, 56, 181-185.	1.7	36
57	Testing the relationship between microbiome composition and flux of carbon and nutrients in Caribbean coral reef sponges. Microbiome, 2019, 7, 124.	11.1	36
58	Amaranzole A, a New N-Imidazolyl Steroid from Phorbas amaranthus. Organic Letters, 2007, 9, 5219-5222.	4.6	33
59	Effects of Karenia brevis on clearance rates and bioaccumulation of brevetoxins in benthic suspension feeding invertebrates. Aquatic Toxicology, 2012, 106-107, 85-94.	4.0	33
60	Secondary metabolites of the chemically rich ascoglossanCyerce nigricans. Experientia, 1990, 46, 327-329.	1.2	31
61	Feeding and respiration by giant barrel sponges across a gradient of food abundance in the Red Sea. Limnology and Oceanography, 2019, 64, 1790-1801.	3.1	31
62	Sponge white patch disease affecting the Caribbean sponge Amphimedon compressa. Diseases of Aquatic Organisms, 2012, 99, 95-102.	1.0	31
63	Comparison of reproductive patterns among 7 Caribbean sponge species does not reveal a resource trade-off with chemical defenses. Journal of Experimental Marine Biology and Ecology, 2011, 401, 80-84.	1.5	30
64	Abiotic factors control sponge ecology in Florida mangroves. Marine Ecology - Progress Series, 2007, 339, 93-98.	1.9	30
65	Phorbasterones Aâ^'D, CytotoxicNor-Ring A Steroids from the SpongePhorbas amaranthus. Journal of Natural Products, 2004, 67, 731-733.	3.0	27
66	Nonlabens tegetincola gen. nov., sp. nov., a novel member of the family Flavobacteriaceae isolated from a microbial mat in a subtropical estuary. International Journal of Systematic and Evolutionary Microbiology, 2005, 55, 2279-2283.	1.7	27
67	Amaroxocanes A and B: Sulfated Dimeric Sterols Defend the Caribbean Coral Reef Sponge <i>Phorbas amaranthus</i> from Fish Predators. Journal of Natural Products, 2009, 72, 259-264.	3.0	27
68	Fragments or propagules? Reproductive tradeoffs among Callyspongia spp. from Florida coral reefs. Oikos, 2010, 119, 1417-1422.	2.7	27
69	Do coral reef fish learn to avoid unpalatable prey using visual cues?. Animal Behaviour, 2013, 85, 339-347.	1.9	27
70	Antipredatory secosterols from the octocoral Pseudopterogorgia americana. Marine Ecology - Progress Series, 2007, 329, 307-310.	1.9	27
71	Chlorinated Thiazoleâ€Containing Polyketideâ€Peptides from the Caribbean Sponge Smenospongia conulosa: Structure Elucidation on Microgram Scale. European Journal of Organic Chemistry, 2016, 2016, 2871-2875.	2.4	26

Phenotypic plasticity in the Caribbean sponge <i>Callyspongia vaginalis</i> (Porifera:) Tj ETQq0 0 0 rgBT/Qverlock_10 Tf 50 6

#	Article	IF	CITATIONS
73	Antifouling activity and microbial diversity of two congeneric sponges Callyspongia spp. from Hong Kong and the Bahamas. Marine Ecology - Progress Series, 2006, 324, 151-165.	1.9	24
74	Bleaching of the giant barrel sponge Xestospongia muta in the Florida Keys. Limnology and Oceanography, 2011, 56, 2243-2250.	3.1	23
75	Growth estimates of Caribbean reef sponges on a shipwreck using 3D photogrammetry. Scientific Reports, 2019, 9, 18398.	3.3	23
76	Amaranzoles Bâ^'F, Imidazole-2-carboxy Steroids from the Marine Sponge Phorbas amaranthus. C24-Nand C24-O-Analogues from a Divergent Oxidative Biosynthesis. Journal of Organic Chemistry, 2010, 75, 2453-2460.	3.2	22
77	Demography alters carbon flux for a dominant benthic suspension feeder, the giant barrel sponge, on Conch Reef, Florida Keys. Functional Ecology, 2017, 31, 2188-2198.	3.6	21
78	New Antifeedant Triterpene Glycosides from the Caribbean Sponge <i>Erylus Formosus</i> Product Research, 2001, 15, 275-285.	0.4	19
79	Surface bacterial community, fatty acid profile, and antifouling activity of two congeneric sponges from Hong Kong and the Bahamas. Marine Ecology - Progress Series, 2007, 339, 25-40.	1.9	19
80	No evidence for food limitation of Caribbean reef sponges: Reply to Slattery & Slattery & Reply to Slatter	1.9	19
81	Fast Detection of Two Smenamide Family Members Using Molecular Networking. Marine Drugs, 2019, 17, 618.	4.6	16
82	Sponges With Microbial Symbionts Transform Dissolved Organic Matter and Take Up Organohalides. Frontiers in Marine Science, 2021, 8, .	2.5	16
83	Friend or foe? No evidence that association with the sponge Mycale laevis provides a benefit to corals of the genus Montastraea. Marine Ecology - Progress Series, 2012, 465, 111-117.	1.9	15
84	Phenotypic variability in the Caribbean Orange Icing sponge Mycale laevis (Demospongiae:) Tj ETQq0 0 0 rgBT /C)verlock 10 2.0	о т _£ 50 302 та
85	New Tricks with an Old Sponge: Feature-Based Molecular Networking Led to Fast Identification of New Stylissamide L from Stylissa caribica. Marine Drugs, 2020, 18, 443.	4.6	15
86	Metabolite variability in Caribbean sponges of the genus Aplysina. Revista Brasileira De Farmacognosia, 2015, 25, 592-599.	1.4	14
87	The polychaete Cirriformia punctata is chemically defended against generalist coral reef predators. Journal of Experimental Marine Biology and Ecology, 2007, 353, 198-202.	1.5	13
88	Assessing the antipredatory defensive strategies of Caribbean non-scleractinian zoantharians (Cnidaria): is the sting the only thing?. Marine Biology, 2012, 159, 389-398.	1.5	13
89	A review of the sponge increase hypothesis for Caribbean mesophotic reefs. Marine Biodiversity, 2019, 49, 1073-1083.	1.0	13
90	New epizooic symbioses between sponges of the genera Plakortis and Xestospongia in cryptic habitats of the Caribbean. Marine Biology, 2014, 161, 2803-2818.	1.5	12

#	Article	IF	CITATIONS
91	Cleaning mutualist or parasite? Classifying the association between the brittlestar Ophiothrix lineata and the Caribbean reef sponge Callyspongia vaginalis. Journal of Experimental Marine Biology and Ecology, 2014, 454, 42-48.	1.5	12
92	Agelas Wasting Syndrome Alters Prokaryotic Symbiont Communities of the Caribbean Brown Tube Sponge, Agelas tubulata. Microbial Ecology, 2018, 76, 459-466.	2.8	11
93	A Novel Technique for the Reattachment of Large Coral Reef Sponges. Restoration Ecology, 2009, 17, 192-195.	2.9	10
94	Application of diet theory reveals context-dependent foraging preferences in an herbivorous coral reef fish. Oecologia, 2017, 184, 127-137.	2.0	10
95	Defense by association: Spongeâ€eating fishes alter the smallâ€scale distribution of Caribbean reef sponges. Marine Ecology, 2017, 38, e12410.	1.1	9
96	Isolation of Smenopyrone, a Bis- \hat{l}^3 -Pyrone Polypropionate from the Caribbean Sponge Smenospongia aurea. Marine Drugs, 2018, 16, 285.	4.6	9
97	Siphonodictyal B1 from a Marine Sponge Increases Intracellular Calcium Levels Comparable to the Ca2+-ATPase (SERCA) Inhibitor Thapsigargin. Marine Biotechnology, 2010, 12, 267-272.	2.4	8
98	Evidence for shifting genetic structure among Caribbean giant barrel sponges in the Florida Keys. Marine Biology, 2018, 165, 1.	1.5	8
99	Specificity of larval settlement of the <scp>C</scp> aribbean <scp>O</scp> range <scp>I</scp> cing <scp>S</scp> ponge, <i><scp>M</scp>ycale laevis</i> . Invertebrate Biology, 2012, 131, 155-164.	0.9	7
100	Cowries graze verongid sponges on Caribbean reefs. Coral Reefs, 2015, 34, 663-663.	2.2	7
101	Patterns of benthic cover with depth on Caribbean mesophotic reefs. Coral Reefs, 2019, 38, 961-972.	2.2	6
102	Sponge density increases with depth throughout the Caribbean: Comment. Ecosphere, 2019, 10, e02689.	2.2	6
103	Perilous proximity: Does the Janzen–Connell hypothesis explain the distribution of giant barrel sponges on a Florida coral reef?. Coral Reefs, 2015, 34, 561-567.	2.2	5
104	No accounting for taste: Palatability of variably defended Caribbean sponge species is unrelated to predator abundance. Journal of Experimental Marine Biology and Ecology, 2016, 485, 57-64.	1.5	4
105	Biogeographical homogeneity of Caribbean coral reef benthos. Journal of Biogeography, 2017, 44, 960-962.	3.0	4
106	Naturally occurring organobromine compounds (OBCs) including polybrominated dibenzo-p-dioxins in the marine sponge Hyrtios proteus from The Bahamas. Marine Pollution Bulletin, 2021, 172, 112872.	5.0	4
107	A Fish-feeding Laboratory Bioassay to Assess the Antipredatory Activity of Secondary Metabolites from the Tissues of Marine Organisms. Journal of Visualized Experiments, 2015, , 52429.	0.3	3
108	Molecular detection and microbiome differentiation of two cryptic lineages of giant barrel sponges from Conch Reef, Florida Keys. Coral Reefs, 2021, 40, 853-865.	2.2	3

#	ARTICLE	IF	CITATIONS
109	Zeamide, a Glycosylinositol Phosphorylceramide with the Novel Core Arap(1β→6)Ins Motif from the Marine Sponge Svenzea zeai. Molecules, 2017, 22, 1455.	3.8	2
110	Evidence for trophic niche partitioning among three temperate gorgonian octocorals. Coral Reefs, 0, ,	2.2	1
111	Phenotypic variability in the Caribbean Orange Icing sponge Mycale laevis (Demospongiae:) Tj ETQq1 1 0.784314	1 rgBT /O	verlock 10 Tf 5
112	Unusual Morphotypes of the Giant Barrel Sponge off the Coast of Barbados. Diversity, 2021, 13, 663.	1.7	0