Jiangjiang Qin

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6491538/publications.pdf

Version: 2024-02-01

		101543	123424
121	4,493	36	61
papers	citations	h-index	g-index
125	125	125	5253
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Structure elucidation of a novel cyclic tripeptide from the marine-derived fungus <i>Aspergillus ochraceopetaliformis</i> DSW-2. Natural Product Research, 2022, 36, 3572-3578.	1.8	4
2	Editorial: Alcohol Consumption and Liver Diseases: From Pathology to Phytotherapy. Frontiers in Pharmacology, 2022, 13, 848334.	3.5	O
3	Targeting E2 ubiquitin-conjugating enzyme UbcH5c by small molecule inhibitor suppresses pancreatic cancer growth and metastasis. Molecular Cancer, 2022, 21, 70.	19.2	15
4	Abstract 5017: A single-cell atlas of tumor microenvironment defines the continuum of gastric adenocarcinoma tumorigenesis and progression. Cancer Research, 2022, 82, 5017-5017.	0.9	0
5	Abstract 5072: A novel antibody drug conjugateengineered for chromosome instable gastric cancer. Cancer Research, 2022, 82, 5072-5072.	0.9	0
6	Biodegradable iron oxide nanoparticles for intraoperative parathyroid gland imaging in thyroidectomy. , 2022, $1,\ldots$		3
7	p-MEK expression predicts prognosis of patients with adenocarcinoma of esophagogastric junction (AEG) and plays a role in anti-AEG efficacy of Huaier. Pharmacological Research, 2021, 165, 105411.	7.1	12
8	PROTAC: An Effective Targeted Protein Degradation Strategy for Cancer Therapy. Frontiers in Pharmacology, 2021, 12, 692574.	3.5	140
9	The role of miRNAs in MDMXâ€p53 interplay. Journal of Evidence-Based Medicine, 2021, 14, 152-160.	1.8	3
10	Recent Update on Development of Small-Molecule STAT3 Inhibitors for Cancer Therapy: From Phosphorylation Inhibition to Protein Degradation. Journal of Medicinal Chemistry, 2021, 64, 8884-8915.	6.4	78
11	Protein degradation technology: a strategicÂparadigmÂshift in drug discovery. Journal of Hematology and Oncology, 2021, 14, 138.	17.0	45
12	Integrative analysis reveals clinically relevant molecular fingerprints in pancreatic cancer. Molecular Therapy - Nucleic Acids, 2021, 26, 11-21.	5.1	3
13	Identification of a DNA Methylation-Driven Genes-Based Prognostic Model and Drug Targets in Breast Cancer: In silico Screening of Therapeutic Compounds and in vitro Characterization. Frontiers in Immunology, 2021, 12, 761326.	4.8	7
14	Targeting MDM2 for novel molecular therapy: Beyond oncology. Medicinal Research Reviews, 2020, 40, 856-880.	10.5	56
15	The E2 ubiquitin-conjugating enzyme UbcH5c: an emerging target in cancer and immune disorders. Drug Discovery Today, 2020, 25, 1988-1997.	6.4	11
16	Targeting \hat{I}^2 -Catenin Signaling by Natural Products for Cancer Prevention and Therapy. Frontiers in Pharmacology, 2020, 11, 984.	3.5	25
17	The Role of Autophagy in Gastric Cancer Chemoresistance: Friend or Foe?. Frontiers in Cell and Developmental Biology, 2020, 8, 621428.	3.7	40
18	Targeting MDMX for Cancer Therapy: Rationale, Strategies, and Challenges. Frontiers in Oncology, 2020, 10, 1389.	2.8	23

#	Article	IF	Citations
19	Antimicrobial Peptide Reverses ABCB1-Mediated Chemotherapeutic Drug Resistance. Frontiers in Pharmacology, 2020, 11, 1208.	3.5	23
20	Integrated Bioinformatics Analysis Reveals Key Candidate Genes and Pathways Associated With Clinical Outcome in Hepatocellular Carcinoma. Frontiers in Genetics, 2020, 11, 814.	2.3	11
21	Aspeterreurone A, a Cytotoxic Dihydrobenzofuran–Phenyl Acrylate Hybrid from the Deep-Sea-Derived Fungus <i>Aspergillus terreus</i> CC-S06-18. Journal of Natural Products, 2020, 83, 1998-2003.	3.0	26
22	Long non-coding RNAs towards precision medicine in gastric cancer: early diagnosis, treatment, and drug resistance. Molecular Cancer, 2020, 19, 96.	19.2	191
23	Cytotoxic Nitrogenated Azaphilones from the Deep-Sea-Derived Fungus <i>Chaetomium globosum</i> MP4-S01-7. Journal of Natural Products, 2020, 83, 1157-1166.	3.0	39
24	Chemical constituents from wetland soil fungus Penicillium oxalicum GY1. Fìtoterapìâ, 2020, 142, 104530.	2.2	6
25	Medicinal chemistry strategies to discover P-glycoprotein inhibitors: An update. Drug Resistance Updates, 2020, 49, 100681.	14.4	154
26	Targeting USP7-Mediated Deubiquitination of MDM2/MDMX-p53 Pathway for Cancer Therapy: Are We There Yet?. Frontiers in Cell and Developmental Biology, 2020, 8, 233.	3.7	61
27	Terphenyllin Suppresses Orthotopic Pancreatic Tumor Growth and Prevents Metastasis in Mice. Frontiers in Pharmacology, 2020, 11, 457.	3.5	19
28	Synthesis, Characterization, Cellular Uptake, and In Vitro Anticancer Activity of Fullerenol-Doxorubicin Conjugates. Frontiers in Pharmacology, 2020, 11, 598155.	3.5	17
29	Identification of an Immune Gene-Associated Prognostic Signature and Its Association With a Poor Prognosis in Gastric Cancer Patients. Frontiers in Oncology, 2020, 10, 629909.	2.8	16
30	A novel inhibitor of MDM2 oncogene blocks metastasis of hepatocellular carcinoma and overcomes chemoresistance. Genes and Diseases, 2019, 6, 419-430.	3.4	33
31	Dual roles and therapeutic potential of Keap1-Nrf2 pathway in pancreatic cancer: a systematic review. Cell Communication and Signaling, 2019, 17, 121.	6.5	68
32	MDM2-NFAT1 dual inhibitor, MA242: Effective against hepatocellular carcinoma, independent of p53. Cancer Letters, 2019, 459, 156-167.	7.2	36
33	STAT3 as a potential therapeutic target in triple negative breast cancer: a systematic review. Journal of Experimental and Clinical Cancer Research, 2019, 38, 195.	8.6	249
34	Is CDK9 a promising target for both primary and metastatic osteosarcoma?. EBioMedicine, 2019, 40, 27-28.	6.1	4
35	Abstract 3858: Inflammation and oncogene in hepatocellular carcinoma: Clinical relevance and experimental targeted therapy. , 2019, , .		0
36	Discovery and Characterization of Dual Inhibitors of MDM2 and NFAT1 for Pancreatic Cancer Therapy. Cancer Research, 2018, 78, 5656-5667.	0.9	42

#	Article	IF	CITATIONS
37	Natural products targeting the p53-MDM2 pathway and mutant p53: Recent advances and implications in cancer medicine. Genes and Diseases, 2018, 5, 204-219.	3.4	66
38	Prevention of prostate cancer by natural product MDM2 inhibitor GS25: in vitro and in vivo activities and molecular mechanisms. Carcinogenesis, 2018, 39, 1026-1036.	2.8	27
39	Inhibiting \hat{I}^2 -Catenin by \hat{I}^2 -Carboline-Type MDM2 Inhibitor for Pancreatic Cancer Therapy. Frontiers in Pharmacology, 2018, 9, 5.	3.5	21
40	Abstract 4867: Treating hepatocellular carcinoma metastasis and overcoming chemoresistance through inhibiting the MDM2 oncogene. , 2018, , .		0
41	Abstract 4863: Targeting the NFAT1-MDM2-MDMX network for prostate cancer therapy. , 2018, , .		0
42	Novel natural product therapeutics targeting both inflammation and cancer. Chinese Journal of Natural Medicines, 2017, 15, 401-416.	1.3	39
43	Highly efficient delivery of potent anticancer iminoquinone derivative by multilayer hydrogel cubes. Acta Biomaterialia, 2017, 58, 386-398.	8.3	37
44	Targeting the NFAT1-MDM2-MDMX Network Inhibits the Proliferation and Invasion of Prostate Cancer Cells, Independent of p53 and Androgen. Frontiers in Pharmacology, 2017, 8, 917.	3.5	28
45	Experimental Therapy of Advanced Breast Cancer: Targeting NFAT1–MDM2–p53 Pathway. Progress in Molecular Biology and Translational Science, 2017, 151, 195-216.	1.7	20
46	Oral delivery of anti-MDM2 inhibitor SP141-loaded FcRn-targeted nanoparticles to treat breast cancer and metastasis. Journal of Controlled Release, 2016, 237, 101-114.	9.9	31
47	Inulanolide A as a new dual inhibitor of NFAT1-MDM2 pathway for breast cancer therapy. Oncotarget, 2016, 7, 32566-32578.	1.8	27
48	Identification of lineariifolianoid A as a novel dual NFAT1 and MDM2 inhibitor for human cancer therapy. Journal of Biomedical Research, 2016, 30, 322-33.	1.6	23
49	Development and validation of a rapid HPLC method for quantitation of SPâ€141, a novel pyrido[b]indole anticancer agent, and an initial pharmacokinetic study in mice. Biomedical Chromatography, 2015, 29, 654-663.	1.7	12
50	Polycomb Group (PcG) Proteins and Human Cancers: Multifaceted Functions and Therapeutic Implications. Medicinal Research Reviews, 2015, 35, 1220-1267.	10.5	93
51	RYBP predicts survival of patients with non-small cell lung cancer and regulates tumor cell growth and the response to chemotherapy. Cancer Letters, 2015, 369, 386-395.	7.2	26
52	Development and validation of an HPLC-MS/MS analytical method for quantitative analysis of TCBA-TPQ, a novel anticancer makaluvamine analog, and application in a pharmacokinetic study in rats. Chinese Journal of Natural Medicines, 2015, 13, 554-560.	1.3	2
53	Identification of a new class of natural product MDM2 inhibitor:In vitroandin vivoanti-breast cancer activities and target validation. Oncotarget, 2015, 6, 2623-2640.	1.8	55
54	Oral nano-delivery of anticancer ginsenoside 25-OCH3-PPD, a natural inhibitor of the MDM2 oncogene: Nanoparticle preparation, characterization, <i>in vitro </i> and <i>in vivo </i> anti-prostate cancer activity, and mechanisms of action. Oncotarget, 2015, 6, 21379-21394.	1.8	57

#	Article	IF	CITATIONS
55	Inhibiting NFAT1 for breast cancer therapy: New insights into the mechanism of action of MDM2 inhibitor JapA. Oncotarget, 2015, 6, 33106-33119.	1.8	28
56	Abstract 2434: The anticancer activity of Japonicone A is mediated by inhibiting NFAT1-MDM2 pathway. , 2015, , .		0
57	Abstract 5266: RYBP expression predicts survival of patients with hepatocellular carcinoma, and regulates response to chemotherapy. , 2015 , , .		0
58	Abstract 2433: A novel MDM2 inhibitor suppresses breast cancer growth and metastasis. , 2015, , .		0
59	The pyrido[b]indole MDM2 inhibitor SP-141 exerts potent therapeutic effects in breast cancer models. Nature Communications, 2014, 5, 5086.	12.8	70
60	<i>Inula</i> sesquiterpenoids: structural diversity, cytotoxicity and anti-tumor activity. Expert Opinion on Investigational Drugs, 2014, 23, 317-345.	4.1	100
61	A quantitative LC-MS/MS method for determination of SP-141, a novel pyrido[b]indole anticancer agent, and its application to a mouse PK study. Journal of Chromatography B: Analytical Technologies in the Biomedical and Life Sciences, 2014, 969, 235-240.	2.3	6
62	Identification of a New Class of MDM2 Inhibitor That Inhibits Growth of Orthotopic Pancreatic Tumors in Mice. Gastroenterology, 2014, 147, 893-902.e2.	1.3	69
63	NFAT as cancer target: Mission possible?. Biochimica Et Biophysica Acta: Reviews on Cancer, 2014, 1846, 297-311.	7.4	90
64	RYBP expression is associated with better survival of patients with hepatocellular carcinoma (HCC) and responsiveness to chemotherapy of HCC cells <i>in vitro</i> and <i>in vivo</i> Oncotarget, 2014, 5, 11604-11619.	1.8	46
65	Five new sesquiterpene lactones from Inula hupehensis. Archives of Pharmacal Research, 2013, 36, 1319-1325.	6.3	33
66	Japonicones Q–T, four new dimeric sesquiterpene lactones from Inula japonica Thunb Fìtoterapìâ, 2013, 84, 40-46.	2.2	33
67	Chemical constiuents of Euonymus acanthocarpus. Chemistry of Natural Compounds, 2013, 49, 383-387.	0.8	6
68	Chemical Constituents from Aphanamixis grandifolia. Chemistry of Natural Compounds, 2013, 49, 486-492.	0.8	24
69	Identification and structural characterization of dimeric sesquiterpene lactones in ⟨i>Inula japonica⟨i> Thunb. by highâ€performance liquid chromatography/electrospray ionization with multiâ€stage mass spectrometry. Rapid Communications in Mass Spectrometry, 2013, 27, 2159-2169.	1.5	9
70	Bioactive eudesmane and germacrane derivatives from Inula wissmanniana HandMazz Phytochemistry, 2013, 96, 214-222.	2.9	24
71	Selective cytotoxicity, inhibition of cell cycle progression, and induction of apoptosis in human breast cancer cells by sesquiterpenoids from Inula lineariifolia Turcz European Journal of Medicinal Chemistry, 2013, 68, 473-481.	5.5	41
72	Japonicone A Suppresses Growth of Burkitt Lymphoma Cells through Its Effect on NF-κB. Clinical Cancer Research, 2013, 19, 2917-2928.	7.0	42

#	Article	lF	CITATIONS
73	Aphanamgrandiol A, a new triterpenoid with a unique carbon skeleton from Aphanamixis grandifolia. FA¬toterapìâ, 2013, 86, 217-221.	2.2	11
74	Hookerolides A–D, the first naturally occurring C17-pseudoguaianolides from Inula hookeri. Tetrahedron Letters, 2013, 54, 1943-1946.	1.4	12
75	miRNAs in Cancer Prevention and Treatment and as Molecular Targets for Natural Product Anticancer Agents. Current Cancer Drug Targets, 2013, 13, 519-541.	1.6	33
76	The MDM2-p53 pathway revisited. Journal of Biomedical Research, 2013, 27, 254.	1.6	279
77	Identification of the ZAK-MKK4-JNK-TGFβ Signaling Pathway as a Molecular Target for Novel Synthetic Iminoquinone Anticancer Compound BA-TPQ. Current Cancer Drug Targets, 2013, 13, 651-660.	1.6	8
78	Sesquiterpenoids from <i>Inula racemosa </i> Hook. f. Inhibit Nitric Oxide Production. Planta Medica, 2012, 78, 166-171.	1.3	27
79	Natural Product MDM2 Inhibitors: Anticancer Activity and Mechanisms of Action. Current Medicinal Chemistry, 2012, 19, 5705-5725.	2.4	56
80	Sesquiterpene Lactones from Inula hupehensis Inhibit Nitric Oxide Production in RAW264.7 Macrophages. Planta Medica, 2012, 78, 1002-1009.	1.3	25
81	Phenylpropanoids and lignanoids from Euonymus acanthocarpus. Archives of Pharmacal Research, 2012, 35, 1739-1747.	6.3	54
82	Japonicone A antagonizes the activity of TNF- $\hat{l}\pm$ by directly targeting this cytokine and selectively disrupting its interaction with TNF receptor-1. Biochemical Pharmacology, 2012, 84, 1482-1491.	4.4	35
83	Lineariifolianoids A–D, rare unsymmetrical sesquiterpenoid dimers comprised of xanthane and guaiane framework units from Inula lineariifolia. RSC Advances, 2012, 2, 1307.	3.6	28
84	Argutalactone, an unprecedented sesquiterpenoid lactone with a $6/5/7$ tricyclic system from < i>Incarvillea arguta < /i>Iournal of Asian Natural Products Research, 2012, 14, 496-502.	1.4	3
85	Norlignans and Phenylpropanoids from Metasequoia glyptostroboidesHu et Cheng. Helvetica Chimica Acta, 2012, 95, 606-612.	1.6	6
86	Chemical Constituents of Plants from the Genus <i>Euonymus</i> . Chemistry and Biodiversity, 2012, 9, 1055-1076.	2.1	18
87	Preclinical pharmacology of novel indolecarboxamide ML-970, an investigative anticancer agent. Cancer Chemotherapy and Pharmacology, 2012, 69, 1423-1431.	2.3	9
88	Terpenoids from Inula sericophylla Franch. and their chemotaxonomic significance. Biochemical Systematics and Ecology, 2012, 42, 75-78.	1.3	13
89	2,3-Seco- and 3,4-seco-tirucallane triterpenoid derivatives from the stems of Aphanamixis grandifolia Blume. Phytochemistry, 2012, 80, 148-155.	2.9	22
90	JKA97, a Novel Benzylidene Analog of Harmine, Exerts Anti-Cancer Effects by Inducing G1 Arrest, Apoptosis, and p53-Independent Up-Regulation of p21. PLoS ONE, 2012, 7, e34303.	2.5	32

#	Article	IF	CITATIONS
91	Natural Product Ginsenoside 25-OCH3-PPD Inhibits Breast Cancer Growth and Metastasis through Down-Regulating MDM2. PLoS ONE, 2012, 7, e41586.	2.5	73
92	Ginsenosides as anticancer agents: In vitro and in vivo activities, structure–activity relationships, and molecular mechanisms of action. Frontiers in Pharmacology, 2012, 3, 25.	3.5	272
93	Sesquiterpene lactones from Inula helianthus-aquatica. Zhongguo Zhongyao Zazhi, 2012, , .	0.1	2
94	Sesquiterpene lactones from Inula helianthus-aquatica. Zhongguo Zhongyao Zazhi, 2012, 37, 1586-9.	0.1	3
95	Taraxasterane-Type Triterpene and Neolignans from <i>Geum japonicum </i> Thunb. var. <i>chinense </i> F. Bolle. Planta Medica, 2011, 77, 2061-2065.	1.3	17
96	Neojaponicone A, a bioactive sesquiterpene lactone dimer with an unprecedented carbon skeleton from Inula japonica. Chemical Communications, 2011, 47, 1222-1224.	4.1	61
97	Pseudoguaianolides and Guaianolides from <i>Inula hupehensis</i> as Potential Anti-inflammatory Agents. Journal of Natural Products, 2011, 74, 1881-1887.	3.0	52
98	Sesquiterpene lactones from Inula falconeri, a plant endemic to the Himalayas, as potential anti-inflammatory agents. European Journal of Medicinal Chemistry, 2011, 46, 5408-5415.	5 . 5	64
99	Phytane and neoclerodane diterpenes from the aerial parts of Inula nervosa Wall Biochemical Systematics and Ecology, 2011, 39, 700-703.	1.3	19
100	Chemical constituents of the aerial parts of Aconitum kongboense. Chemistry of Natural Compounds, 2011, 47, 854-855.	0.8	2
101	Monoterpenes and other chemical constituents from the aerial parts of Inula japonica. Chemistry of Natural Compounds, 2011, 47, 303-305.	0.8	14
102	Chemical constituents from Verbena officinalis. Chemistry of Natural Compounds, 2011, 47, 319-320.	0.8	8
103	Two new monoterpene alkaloid derivatives from the roots of Incarvillea arguta. Archives of Pharmacal Research, 2011, 34, 199-202.	6.3	5
104	New glycosides from Dracocephalum tanguticum maxim. Archives of Pharmacal Research, 2011, 34, 2015-2020.	6.3	15
105	Three New Neolignans and One New Phenylpropanoid from the Leaves and Stems of <i>Toona ciliata</i> var. <i>pubescens</i> Helvetica Chimica Acta, 2011, 94, 1685-1691.	1.6	7
106	Chemical Constituents of Plants from the Genus <i>Geum</i> . Chemistry and Biodiversity, 2011, 8, 203-222.	2.1	20
107	Four New Sesquiterpenoids from the Roots of Incarvillea arguta and Their Inhibitory Activities against Lipopolysaccharide-Induced Nitric Oxide Production. Chemical and Pharmaceutical Bulletin, 2010, 58, 1263-1266.	1.3	17
108	Three New Phenylpropanoids from <i>Inula nervosa</i> <scp>Wall</scp> Helvetica Chimica Acta, 2010, 93, 1418-1421.	1.6	16

#	Article	IF	CITATIONS
109	Chemical Constituents of Plants from the Genus <i>Dracocephalum</i> . Chemistry and Biodiversity, 2010, 7, 1911-1929.	2.1	65
110	New sesquiterpenes from Inula japonica Thunb. with their inhibitory activities against LPS-induced NO production in RAW264.7 macrophages. Tetrahedron, 2010, 66, 9379-9388.	1.9	69
111	Blumeaenes A–J, Sesquiterpenoid Esters from <i>Blumea balsamifera</i> with NO Inhibitory Activity. Planta Medica, 2010, 76, 897-902.	1.3	28
112	Japonicones E–L, Dimeric Sesquiterpene Lactones from <i>Inula japonica</i> Thunb Planta Medica, 2010, 76, 278-283.	1.3	52
113	Sesquiterpenoids from <i>Inula lineariifolia</i> Inhibit Nitric Oxide Production. Journal of Natural Products, 2010, 73, 1117-1120.	3.0	58
114	Two New Cytotoxic Biphenyls from the Roots ofIncarvillea arguta. Helvetica Chimica Acta, 2009, 92, 491-494.	1.6	12
115	Chemical Constituents of Plants from the Genus <i>Incarvillea</i> . Chemistry and Biodiversity, 2009, 6, 818-826.	2.1	13
116	A new triterpenoid from Brucea javanica. Archives of Pharmacal Research, 2009, 32, 661-666.	6.3	22
117	A new ent-kaurane type diterpenoid glycoside from Inula japonica Thunb Archives of Pharmacal Research, 2009, 32, 1369-1372.	6.3	22
118	A new nor-sesquiterpene lactone from Ainsliaea fulvioides. Chinese Chemical Letters, 2009, 20, 586-588.	9.0	6
119	Japonicones A–D, bioactive dimeric sesquiterpenes from Inula japonica Thunb Bioorganic and Medicinal Chemistry Letters, 2009, 19, 710-713.	2.2	88
120	Anthranilic acid derivatives from Inula japonica. Chinese Chemical Letters, 2008, 19, 556-558.	9.0	8
121	Ainsliatrimers A and B, the First Two Guaianolide Trimers from <i>Ainsliaea fulvioides</i> Letters, 2008, 10, 5517-5520.	4.6	62