Daisuke Shiomi

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6491099/publications.pdf

Version: 2024-02-01

430874 395702 1,358 36 18 33 citations h-index g-index papers 40 40 40 1207 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Direct Observation of Conversion From Walled Cells to Wall-Deficient L-Form and Vice Versa in Escherichia coli Indicates the Essentiality of the Outer Membrane for Proliferation of L-Form Cells. Frontiers in Microbiology, 2021, 12, 645965.	3.5	13
2	Alteration of Membrane Fluidity or Phospholipid Composition Perturbs Rotation of MreB Complexes in Escherichia coli. Frontiers in Molecular Biosciences, 2020, 7, 582660.	3.5	7
3	Divisionâ€site localization of RodZ is required for efficient Z ring formation inEscherichia coli. Molecular Microbiology, 2019, 111, 1229-1244.	2.5	15
4	Relation between rotation of MreB actin and cell width of Escherichia coli. Genes To Cells, 2019, 24, 259-265.	1.2	35
5	RodZ: a key-player in cell elongation and cell division in Escherichia coli . AlMS Microbiology, 2019, 5, 358-367.	2.2	13
6	Regulations of Subcellular Localization and Functions of MreB Actin in <i>Escherichia coli</i> Seibutsu Butsuri, 2019, 59, 100-102.	0.1	0
7	The periplasmic disordered domain of RodZ promotes its selfâ€interaction in <i>Escherichia coli</i> Genes To Cells, 2018, 23, 307-317.	1.2	9
8	Bacterial Heterologous Expression System for Reconstitution of Chloroplast Inner Division Ring and Evaluation of Its Contributors. International Journal of Molecular Sciences, 2018, 19, 544.	4.1	3
9	Exclusion of assembled <scp>M</scp> re <scp>B</scp> by anionic phospholipids at cell poles confers cell polarity for bidirectional growth. Molecular Microbiology, 2017, 104, 472-486.	2.5	60
10	Polar localization of MreB actin is inhibited by anionic phospholipids in the rod-shaped bacterium Escherichia coli. Current Genetics, 2017, 63, 845-848.	1.7	3
11	ARC6-mediated Z ring-like structure formation of prokaryote-descended chloroplast FtsZ in Escherichia coli. Scientific Reports, 2017, 7, 3492.	3.3	6
12	Rapid, precise quantification of bacterial cellular dimensions across a genomic-scale knockout library. BMC Biology, 2017, 15, 17.	3.8	123
13	OB-I-3Regulation of bacterial cell shape revealed by single cell observations. Microscopy (Oxford,) Tj ETQq1 1 0.7	784314 rg 1.5	BT /Overloc <mark>k i</mark>
14	Mutations in cell elongation genes <scp><i>mreB</i></scp> , <scp><i>mrdA</i></scp> and <scp><i>mrdB</i></scp> suppress the shape defect of <scp><scp>RodZ</scp></scp> â€deficient cells. Molecular Microbiology, 2013, 87, 1029-1044.	2.5	64
15	A mutation in the promoter region of <i><scp><scp><ipa< scp=""></ipa<></scp></scp></i> , a component of the divisome, suppresses the shape defect of <scp><scp>RodZ</scp></scp> â€deficient cells. MicrobiologyOpen, 2013, 2, 798-810.	3.0	12
16	A mutation of ispA that is involved in isoprenoid biogenesis can improve growth of Escherichia coli at low temperatures. Microbiology and Immunology, 2011, 55, 885-888.	1.4	6
17	Visualization of bacteriophage P1 infection by cryo-electron tomography of tiny Escherichia coli. Virology, 2011, 417, 304-311.	2.4	53
18	Identification of <i>Escherichia coli </i> ZapC (YcbW) as a Component of the Division Apparatus That Binds and Bundles FtsZ Polymers. Journal of Bacteriology, 2011, 193, 1393-1404.	2.2	97

#	Article	IF	CITATIONS
19	Genetic mechanism regulating bacterial cell shape and metabolism. Communicative and Integrative Biology, 2009, 2, 219-220.	1.4	7
20	Determination of bacterial rod shape by a novel cytoskeletal membrane protein. EMBO Journal, 2008, 27, 3081-3091.	7.8	150
21	Compensation for the loss of the conserved membrane targeting sequence of FtsA provides new insights into its function. Molecular Microbiology, 2008, 67, 558-569.	2.5	31
22	Mechanisms Underlying Subcellular Localization of the Bacterial Transmembrane Chemoreceptor. Seibutsu Butsuri, 2008, 48, 030-034.	0.1	0
23	The C-Terminal Domain of MinC Inhibits Assembly of the Z Ring in Escherichia coli. Journal of Bacteriology, 2007, 189, 236-243.	2.2	53
24	The ftsA* gain-of-function allele of Escherichia coli and its effects on the stability and dynamics of the Z ring. Microbiology (United Kingdom), 2007, 153, 814-825.	1.8	105
25	A Sweet Sensor for Size-Conscious Bacteria. Cell, 2007, 130, 216-218.	28.9	10
26	An altered FtsA can compensate for the loss of essential cell division protein FtsN in Escherichia coli. Molecular Microbiology, 2007, 64, 1289-1305.	2.5	81
27	Dimerization or oligomerization of the actinâ€like FtsA protein enhances the integrity of the cytokinetic Z ring. Molecular Microbiology, 2007, 66, 1396-1415.	2.5	70
28	2P547 Single cell based analysis on the polarity of Escherichia coli cells(52. Bio-imaging,Poster) Tj ETQq0 0 0 rgE	BT /Overloo	:k 10 Tf 50 38
29	Helical distribution of the bacterial chemoreceptor via colocalization with the Sec protein translocation machinery. Molecular Microbiology, 2006, 60, 894-906.	2.5	99
30	Stabilization of Polar Localization of a Chemoreceptor via Its Covalent Modifications and Its Communication with a Different Chemoreceptor. Journal of Bacteriology, 2005, 187, 7647-7654.	2.2	33
31	Attractant binding alters arrangement of chemoreceptor dimers within its cluster at a cell pole. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101, 3462-3467.	7.1	51
32	Targeting of the chemotaxis methylesterase/deamidase CheB to the polar receptor–kinase cluster in an <i>Escherichia coli</i> cell. Molecular Microbiology, 2004, 53, 1051-1063.	2.5	35
33	Simultaneous measurement of sensor-protein dynamics and motility of a single cell by on-chip microcultivation system. Journal of Nanobiotechnology, 2004, 2, 4.	9.1	19
34	Dual Recognition of the Bacterial Chemoreceptor by Chemotaxis-specific Domains of the CheR Methyltransferase. Journal of Biological Chemistry, 2002, 277, 42325-42333.	3.4	66
35	Intragenic suppressors of a mutation in the aspartate chemoreceptor gene that abolishes binding of the receptor to methyltransferase. Microbiology (United Kingdom), 2002, 148, 3265-3275.	1.8	4
36	The aspartate chemoreceptor Tar is effectively methylated by binding to the methyltransferase mainly through hydrophobic interaction. Molecular Microbiology, 2000, 36, 132-140.	2.5	21