
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6490019/publications.pdf Version: 2024-02-01

Υίννιν Υπάν

#	Article	IF	CITATIONS
1	The genomic and transcriptomic architecture of 2,000 breast tumours reveals novel subgroups. Nature, 2012, 486, 346-352.	27.8	4,708
2	Quantitative Image Analysis of Cellular Heterogeneity in Breast Tumors Complements Genomic Profiling. Science Translational Medicine, 2012, 4, 157ra143.	12.4	356
3	Classifying the evolutionary and ecological features of neoplasms. Nature Reviews Cancer, 2017, 17, 605-619.	28.4	303
4	Interfaces of Malignant and Immunologic Clonal Dynamics in Ovarian Cancer. Cell, 2018, 173, 1755-1769.e22.	28.9	261
5	Spatial Heterogeneity in the Tumor Microenvironment. Cold Spring Harbor Perspectives in Medicine, 2016, 6, a026583.	6.2	194
6	Capture Hi-C identifies the chromatin interactome of colorectal cancer risk loci. Nature Communications, 2015, 6, 6178.	12.8	186
7	Geospatial immune variability illuminates differential evolution of lung adenocarcinoma. Nature Medicine, 2020, 26, 1054-1062.	30.7	181
8	Mapping spatial heterogeneity in the tumor microenvironment: a new era for digital pathology. Laboratory Investigation, 2015, 95, 377-384.	3.7	180
9	Relevance of Spatial Heterogeneity of Immune Infiltration for Predicting Risk of Recurrence After Endocrine Therapy of ER+ Breast Cancer. Journal of the National Cancer Institute, 2018, 110, 166-175.	6.3	122
10	Beyond immune density: critical role of spatial heterogeneity in estrogen receptor-negative breast cancer. Modern Pathology, 2015, 28, 766-777.	5.5	117
11	Pitfalls in assessing stromal tumor infiltrating lymphocytes (sTILs) in breast cancer. Npj Breast Cancer, 2020, 6, 17.	5.2	106
12	Global Analysis of mRNA, Translation, and Protein Localization: Local Translation Is a Key Regulator of Cell Protrusions. Developmental Cell, 2015, 35, 344-357.	7.0	104
13	Microenvironmental Heterogeneity Parallels Breast Cancer Progression: A Histology–Genomic Integration Analysis. PLoS Medicine, 2016, 13, e1001961.	8.4	101
14	Report on computational assessment of Tumor Infiltrating Lymphocytes from the International Immuno-Oncology Biomarker Working Group. Npj Breast Cancer, 2020, 6, 16.	5.2	90
15	Modelling the spatial heterogeneity and molecular correlates of lymphocytic infiltration in triple-negative breast cancer. Journal of the Royal Society Interface, 2015, 12, 20141153.	3.4	82
16	Patient-Specific Data Fusion Defines Prognostic Cancer Subtypes. PLoS Computational Biology, 2011, 7, e1002227.	3.2	81
17	An ecological measure of immune-cancer colocalization as a prognostic factor for breast cancer. Breast Cancer Research, 2015, 17, 131.	5.0	81
18	The T cell differentiation landscape is shaped by tumour mutations in lung cancer. Nature Cancer, 2020, 1, 546-561.	13.2	74

#	Article	IF	CITATIONS
19	Immune Surveillance in Clinical Regression of Preinvasive Squamous Cell Lung Cancer. Cancer Discovery, 2020, 10, 1489-1499.	9.4	60
20	Computational pathology: Exploring the spatial dimension of tumor ecology. Cancer Letters, 2016, 380, 296-303.	7.2	53
21	Systematic evaluation of quantotypic peptides for targeted analysis of the human kinome. Nature Methods, 2014, 11, 1041-1044.	19.0	52
22	Evaluation of CDK12 Protein Expression as a Potential Novel Biomarker for DNA Damage Response–Targeted Therapies in Breast Cancer. Molecular Cancer Therapeutics, 2018, 17, 306-315.	4.1	52
23	Topological Tumor Graphs: A Graph-Based Spatial Model to Infer Stromal Recruitment for Immunosuppression in Melanoma Histology. Cancer Research, 2020, 80, 1199-1209.	0.9	43
24	A tumor DNA complex aberration index is an independent predictor of survival in breast and ovarian cancer. Molecular Oncology, 2015, 9, 115-127.	4.6	38
25	Quantitative histology analysis of the ovarian tumour microenvironment. Scientific Reports, 2015, 5, 16317.	3.3	35
26	Investigating the Contribution of Collagen to the Tumor Biomechanical Phenotype with Noninvasive Magnetic Resonance Elastography. Cancer Research, 2019, 79, 5874-5883.	0.9	35
27	Phosphoproteomic analysis of interacting tumor and endothelial cells identifies regulatory mechanisms of transendothelial migration. Science Signaling, 2016, 9, ra15.	3.6	34
28	Analysis of heterogeneity in T2-weighted MR images can differentiate pseudoprogression from progression in glioblastoma. PLoS ONE, 2017, 12, e0176528.	2.5	34
29	Microenvironmental niche divergence shapes BRCA1-dysregulated ovarian cancer morphological plasticity. Nature Communications, 2018, 9, 3917.	12.8	33
30	Similarity and diversity of the tumor microenvironment in multiple metastases: critical implications for overall and progression-free survival of high-grade serous ovarian cancer. Oncotarget, 2016, 7, 71123-71135.	1.8	32
31	The Spatiotemporal Evolution of Lymph Node Spread in Early Breast Cancer. Clinical Cancer Research, 2018, 24, 4763-4770.	7.0	30
32	Directed Partial Correlation: Inferring Large-Scale Gene Regulatory Network through Induced Topology Disruptions. PLoS ONE, 2011, 6, e16835.	2.5	29
33	A Sparse Regulatory Network of Copy-Number Driven Gene Expression Reveals Putative Breast Cancer Oncogenes. IEEE/ACM Transactions on Computational Biology and Bioinformatics, 2012, 9, 947-954.	3.0	27
34	Biopsy variability of lymphocytic infiltration in breast cancer subtypes and the ImmunoSkew score. Scientific Reports, 2016, 6, 36231.	3.3	27
35	Systematic analysis of tumour cell-extracellular matrix adhesion identifies independent prognostic factors in breast cancer. Oncotarget, 2016, 7, 62939-62953.	1.8	26
36	Artificial intelligence and digital pathology: Opportunities and implications for immuno-oncology. Biochimica Et Biophysica Acta: Reviews on Cancer, 2021, 1875, 188520.	7.4	25

#	Article	IF	CITATIONS
37	An unsupervised conditional random fields approach for clustering gene expression time series. Bioinformatics, 2008, 24, 2467-2473.	4.1	23
38	Digital watermarking scheme exploiting nondeterministic dependence for image authentication. Optical Engineering, 2006, 45, 127001.	1.0	22
39	Superpixel-Based Conditional Random Fields (SuperCRF): Incorporating Global and Local Context for Enhanced Deep Learning in Melanoma Histopathology. Frontiers in Oncology, 2019, 9, 1045.	2.8	22
40	Emerging technologies and their impact on regulatory science. Experimental Biology and Medicine, 2022, 247, 1-75.	2.4	22
41	Unmasking the immune microecology of ductal carcinoma in situ with deep learning. Npj Breast Cancer, 2021, 7, 19.	5.2	20
42	Deconvolving Convolutional Neural Network for Cell Detection. , 2019, , .		18
43	SuperHistopath: A Deep Learning Pipeline for Mapping Tumor Heterogeneity on Low-Resolution Whole-Slide Digital Histopathology Images. Frontiers in Oncology, 2020, 10, 586292.	2.8	18
44	Partial mixture model for tight clustering of gene expression time-course. BMC Bioinformatics, 2008, 9, 287.	2.6	17
45	Predicting chemoinsensitivity in breast cancer with 'omics/digital pathology data fusion. Royal Society Open Science, 2016, 3, 140501.	2.4	16
46	Diffusionâ€weighted MRI for early detection and characterization of prostate cancer in the transgenic adenocarcinoma of the mouse prostate model. Journal of Magnetic Resonance Imaging, 2016, 43, 1207-1217.	3.4	15
47	Noninvasive MRI Native T1 Mapping Detects Response to <i>MYCN</i> -targeted Therapies in the Th- <i>MYCN</i> Model of Neuroblastoma. Cancer Research, 2020, 80, 3424-3435.	0.9	15
48	Capturing Global Spatial Context for Accurate Cell Classification in Skin Cancer Histology. Lecture Notes in Computer Science, 2018, , 52-60.	1.3	14
49	ConCORDe-Net: Cell Count Regularized Convolutional Neural Network for Cell Detection in Multiplex Immunohistochemistry Images. Lecture Notes in Computer Science, 2019, , 667-675.	1.3	14
50	MRI Imaging of the Hemodynamic Vasculature of Neuroblastoma Predicts Response to Antiangiogenic Treatment. Cancer Research, 2019, 79, 2978-2991.	0.9	13
51	Biomarkers for site-specific response to neoadjuvant chemotherapy in epithelial ovarian cancer: relating MRI changes to tumour cell load and necrosis. British Journal of Cancer, 2021, 124, 1130-1137.	6.4	11
52	Analysis of tumour ecological balance reveals resource-dependent adaptive strategies of ovarian cancer. EBioMedicine, 2019, 48, 224-235.	6.1	8
53	Non-Invasive Prostate Cancer Characterization with Diffusion-Weighted MRI: Insight from In silico Studies of a Transgenic Mouse Model. Frontiers in Oncology, 2017, 7, 290.	2.8	7
54	Stromal cell ratio based on automated image analysis as a predictor for platinum-resistant recurrent ovarian cancer. BMC Cancer, 2019, 19, 159.	2.6	7

#	Article	IF	CITATIONS
55	High interâ€follicular spatial coâ€localization of CD8+FOXP3+ with CD4+CD8+ cells predicts favorable outcome in follicular lymphoma. Hematological Oncology, 2022, 40, 541-553.	1.7	6
56	Unsupervised Clustering of Gene Expression Time Series with Conditional Random Fields. , 2007, , .		4
57	Fragile watermarking scheme exploiting non-deterministic block-wise dependency. , 2004, , .		3
58	Partial Mixture Model for Tight Clustering in Exploratory Gene Expression Analysis. , 2007, , .		3
59	Glioma Classification Using Multimodal Radiology and Histology Data. Lecture Notes in Computer Science, 2021, , 508-518.	1.3	3
60	Wisdom Of The Crowd For Early Detection In Barrett's Esophagus. , 2021, , .		3
61	Penalized regression elucidates aberration hotspots mediating subtype-specific transcriptional responses in breast cancer. Bioinformatics, 2011, 27, 2679-2685.	4.1	2
62	Cell Abundance Aware Deep Learning For Cell Detection On Highly Imbalanced Pathological Data. , 2021, , .		2
63	Automated Dcis Identification From Multiplex Immunohistochemistry Using Generative Adversarial Networks. , 2022, , .		1
64	Probabilistic framework for gene expression clustering validation based on gene ontology and graph theory. Proceedings of the IEEE International Conference on Acoustics, Speech, and Signal Processing, 2008, , .	1.8	0
65	A Bayes Random Fields Approach for Integrative Large-Scale Regulatory Network Analysis. Journal of Integrative Bioinformatics, 2008, 5, .	1.5	Ο
66	Inferring Causal Relations from Multivariate Time Series: A Fast Method for Large-Scale Gene Expression Data. , 2009, , .		0
67	Abstract B2-55: Critical role of immune spatial heterogeneity and the molecular scaffold in estrogen receptor-negative breast cancer. , 2015, , .		0
68	Abstract B2-51: SpEeCH: Quantifying Spatial Expression of Clonal Heterogeneity in breast cancer. , 2015, , .		0
69	A Bayes random field approach for integrative large-scale regulatory network analysis. Journal of Integrative Bioinformatics, 2008, 5, .	1.5	О