
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6489524/publications.pdf Version: 2024-02-01

#	ARTICLE	IF	CITATIONS
1	Co@Co ₃ O ₄ Encapsulated in Carbon Nanotubeâ€Grafted Nitrogenâ€Doped Carbon Polyhedra as an Advanced Bifunctional Oxygen Electrode. Angewandte Chemie - International Edition, 2016, 55, 4087-4091.	13.8	1,027
2	Amorphous Cobalt Boride (Co ₂ B) as a Highly Efficient Nonprecious Catalyst for Electrochemical Water Splitting: Oxygen and Hydrogen Evolution. Advanced Energy Materials, 2016, 6, 1502313.	19.5	686
3	On the Role of Metals in Nitrogenâ€Đoped Carbon Electrocatalysts for Oxygen Reduction. Angewandte Chemie - International Edition, 2015, 54, 10102-10120.	13.8	583
4	Mn _{<i>x</i>} O _{<i>y</i>} /NC and Co _{<i>x</i>} O _{<i>y</i>} /NC Nanoparticles Embedded in a Nitrogenâ€Doped Carbon Matrix for Highâ€Performance Bifunctional Oxygen Electrodes. Angewandte Chemie - International Edition, 2014, 53, 8508-8512.	13.8	482
5	Ultrathin High Surface Area Nickel Boride (Ni <i>_x</i> B) Nanosheets as Highly Efficient Electrocatalyst for Oxygen Evolution. Advanced Energy Materials, 2017, 7, 1700381.	19.5	348
6	Electrocatalytic Oxidation of 5â€(Hydroxymethyl)furfural Using Highâ€Surfaceâ€Area Nickel Boride. Angewandte Chemie - International Edition, 2018, 57, 11460-11464.	13.8	283
7	Spinel Mn–Co Oxide in N-Doped Carbon Nanotubes as a Bifunctional Electrocatalyst Synthesized by Oxidative Cutting. Journal of the American Chemical Society, 2014, 136, 7551-7554.	13.7	275
8	Metallic NiPS ₃ @NiOOH Core–Shell Heterostructures as Highly Efficient and Stable Electrocatalyst for the Oxygen Evolution Reaction. ACS Catalysis, 2017, 7, 229-237.	11.2	233
9	Trimetallic Mnâ€Feâ€Ni Oxide Nanoparticles Supported on Multiâ€Walled Carbon Nanotubes as Highâ€Performance Bifunctional ORR/OER Electrocatalyst in Alkaline Media. Advanced Functional Materials, 2020, 30, 1905992.	14.9	209
10	Nanoporous Nitrogenâ€Doped Graphene Oxide/Nickel Sulfide Composite Sheets Derived from a Metalâ€Organic Framework as an Efficient Electrocatalyst for Hydrogen and Oxygen Evolution. Advanced Functional Materials, 2017, 27, 1700451.	14.9	198
11	Koutecky-Levich analysis applied to nanoparticle modified rotating disk electrodes: Electrocatalysis or misinterpretation. Nano Research, 2014, 7, 71-78.	10.4	169
12	Low Overpotential Water Splitting Using Cobalt–Cobalt Phosphide Nanoparticles Supported on Nickel Foam. ACS Energy Letters, 2016, 1, 1192-1198.	17.4	143
13	Electrocatalysis as the Nexus for Sustainable Renewable Energy: The Gordian Knot of Activity, Stability, and Selectivity. Angewandte Chemie - International Edition, 2020, 59, 15298-15312.	13.8	140
14	Oxygen reduction reaction using N₄ -metallomacrocyclic catalysts: fundamentals on rational catalyst design. Journal of Porphyrins and Phthalocyanines, 2012, 16, 761-784.	0.8	132
15	Powder Catalyst Fixation for Postâ€Electrolysis Structural Characterization of NiFe Layered Double Hydroxide Based Oxygen Evolution Reaction Electrocatalysts. Angewandte Chemie - International Edition, 2017, 56, 11258-11262.	13.8	130
16	Metal-free catalysts for oxygen reduction in alkaline electrolytes: Influence of the presence of Co, Fe, Mn and Ni inclusions. Electrochimica Acta, 2014, 128, 271-278.	5.2	129
17	Trace metal residues promote the activity of supposedly metal-free nitrogen-modified carbon catalysts for the oxygen reduction reaction. Electrochemistry Communications, 2013, 34, 113-116.	4.7	124
18	Online Monitoring of Electrochemical Carbon Corrosion in Alkaline Electrolytes by Differential Electrochemical Mass Spectrometry. Angewandte Chemie - International Edition, 2020, 59, 1585-1589.	13.8	124

#	Article	IF	CITATIONS
19	Synergistic Effect of Cobalt and Iron in Layered Double Hydroxide Catalysts for the Oxygen Evolution Reaction. ChemSusChem, 2017, 10, 156-165.	6.8	117
20	MOFs for Electrocatalysis: From Serendipity to Design Strategies. Small Methods, 2019, 3, 1800415.	8.6	100
21	Stabilization of Cu ⁺ by tuning a CuO–CeO ₂ interface for selective electrochemical CO ₂ reduction to ethylene. Green Chemistry, 2020, 22, 6540-6546.	9.0	98
22	MoSSe@reduced graphene oxide nanocomposite heterostructures as efficient and stable electrocatalysts for the hydrogen evolution reaction. Nano Energy, 2016, 29, 46-53.	16.0	94
23	Niâ€Metalloid (B, Si, P, As, and Te) Alloys as Water Oxidation Electrocatalysts. Advanced Energy Materials, 2019, 9, 1900796.	19.5	93
24	Ultrathin 2D Cobalt Zeoliteâ€imidazole Framework Nanosheets for Electrocatalytic Oxygen Evolution. Advanced Science, 2018, 5, 1801029.	11.2	92
25	Oxygen Evolution Electrocatalysis of a Single MOFâ€Derived Composite Nanoparticle on the Tip of a Nanoelectrode. Angewandte Chemie - International Edition, 2019, 58, 8927-8931.	13.8	91
26	Highly active metal-free nitrogen-containing carbon catalysts for oxygen reduction synthesized by thermal treatment of polypyridine-carbon black mixtures. Electrochemistry Communications, 2011, 13, 593-596.	4.7	89
27	Bifunktionale Sauerstoffelektroden durch Einbettung von Co@Co ₃ O ₄ â€Nanopartikeln in CNTâ€gekoppelte Stickstoffâ€dotierte Kohlenstoffpolyeder. Angewandte Chemie, 2016, 128, 4155-4160.	2.0	85
28	The Role of Nonâ€Metallic and Metalloid Elements on the Electrocatalytic Activity of Cobalt and Nickel Catalysts for the Oxygen Evolution Reaction. ChemCatChem, 2019, 11, 5842-5854.	3.7	85
29	Highly Concentrated Aqueous Dispersions of Graphene Exfoliated by Sodium Taurodeoxycholate: Dispersion Behavior and Potential Application as a Catalyst Support for the Oxygenâ€Reduction Reaction. Chemistry - A European Journal, 2012, 18, 6972-6978.	3.3	76
30	Activation and Stabilization of Nitrogen-Doped Carbon Nanotubes as Electrocatalysts in the Oxygen Reduction Reaction at Strongly Alkaline Conditions. Journal of Physical Chemistry C, 2013, 117, 24283-24291.	3.1	76
31	Activation of oxygen evolving perovskites for oxygen reduction by functionalization with Fe–N _x /C groups. Chemical Communications, 2014, 50, 14760-14762.	4.1	76
32	Co ₃ O ₄ @Co/NCNT Nanostructure Derived from a Dicyanamideâ€Based Metalâ€Organic Framework as an Efficient Biâ€functional Electrocatalyst for Oxygen Reduction and Evolution Reactions. Chemistry - A European Journal, 2017, 23, 18049-18056.	3.3	74
33	Perovskite-based bifunctional electrocatalysts for oxygen evolution and oxygen reduction in alkaline electrolytes. Electrochimica Acta, 2016, 208, 25-32.	5.2	73
34	Cobalt boride modified with N-doped carbon nanotubes as a high-performance bifunctional oxygen electrocatalyst. Journal of Materials Chemistry A, 2017, 5, 21122-21129.	10.3	73
35	High-yield exfoliation of graphite in acrylate polymers: A stable few-layer graphene nanofluid with enhanced thermal conductivity. Carbon, 2013, 64, 288-294.	10.3	71
36	Evaluation of Perovskites as Electrocatalysts for the Oxygen Evolution Reaction. ChemPhysChem, 2014, 15, 2810-2816.	2.1	70

#	Article	IF	CITATIONS
37	N-doped carbon synthesized from N-containing polymers as metal-free catalysts for the oxygen reduction under alkaline conditions. Electrochimica Acta, 2013, 98, 139-145.	5.2	68
38	MOFâ€Templated Assembly Approach for Fe ₃ C Nanoparticles Encapsulated in Bambooâ€Like Nâ€Đoped CNTs: Highly Efficient Oxygen Reduction under Acidic and Basic Conditions. Chemistry - A European Journal, 2017, 23, 12125-12130.	3.3	64
39	Role of Boron and Phosphorus in Enhanced Electrocatalytic Oxygen Evolution by Nickel Borides and Nickel Phosphides. ChemElectroChem, 2019, 6, 235-240.	3.4	62
40	Nanoelectrodes reveal the electrochemistry of single nickelhydroxide nanoparticles. Chemical Communications, 2016, 52, 2408-2411.	4.1	59
41	Cobalt–metalloid alloys for electrochemical oxidation of 5-hydroxymethylfurfural as an alternative anode reaction in lieu of oxygen evolution during water splitting. Beilstein Journal of Organic Chemistry, 2018, 14, 1436-1445.	2.2	58
42	Influence of Temperature and Electrolyte Concentration on the Structure and Catalytic Oxygen Evolution Activity of Nickel–Iron Layered Double Hydroxide. Chemistry - A European Journal, 2018, 24, 13773-13777.	3.3	57
43	Rapid and Surfactant-Free Synthesis of Bimetallic Pt–Cu Nanoparticles Simply via Ultrasound-Assisted Redox Replacement. ACS Catalysis, 2012, 2, 1647-1653.	11.2	54
44	High-quality functionalized few-layer graphene: facile fabrication and doping with nitrogen as a metal-free catalyst for the oxygen reduction reaction. Journal of Materials Chemistry A, 2015, 3, 15444-15450.	10.3	53
45	Electrocatalysis and bioelectrocatalysis – Distinction without a difference. Nano Energy, 2016, 29, 466-475.	16.0	53
46	Fe/Co/Ni mixed oxide nanoparticles supported on oxidized multi-walled carbon nanotubes as electrocatalysts for the oxygen reduction and the oxygen evolution reactions in alkaline media. Catalysis Today, 2020, 357, 259-268.	4.4	53
47	Elektrokatalytische Oxidation von 5â€(Hydroxymethyl)furfural an Nickelborid mit großer OberflÜhe. Angewandte Chemie, 2018, 130, 11631-11636.	2.0	50
48	Utilization of the catalyst layer of dimensionally stable anodes—Interplay of morphology and active surface area. Electrochimica Acta, 2012, 82, 408-414.	5.2	49
49	Bifunctional Oxygen Reduction/Oxygen Evolution Activity of Mixed Fe/Co Oxide Nanoparticles with Variable Fe/Co Ratios Supported on Multiwalled Carbon Nanotubes. ChemSusChem, 2018, 11, 1204-1214.	6.8	49
50	Ultrasound-Assisted Nitrogen and Boron Codoping of Graphene Oxide for Efficient Oxygen Reduction Reaction. ACS Sustainable Chemistry and Engineering, 2019, 7, 3434-3442.	6.7	49
51	The Effect of Iron Impurities on Transition Metal Catalysts for the Oxygen Evolution Reaction in Alkaline Environment: Activity Mediators or Active Sites?. Catalysis Letters, 2021, 151, 1843-1856.	2.6	46
52	Activity and Stability of Oxides During Oxygen Evolution Reactionâ€â€â€From Mechanistic Controversies Toward Relevant Electrocatalytic Descriptors. Frontiers in Energy Research, 2021, 8, .	2.3	45
53	Metal–Organic Framework Derived Carbon Nanotube Grafted Cobalt/Carbon Polyhedra Grown on Nickel Foam: An Efficient 3D Electrode for Full Water Splitting. ChemElectroChem, 2017, 4, 188-193.	3.4	43
54	Electrochemical synthesis of metal–polypyrrole composites and their activation for electrocatalytic reduction of oxygen by thermal treatment. Electrochimica Acta, 2012, 60, 410-418.	5.2	40

#	Article	IF	CITATIONS
55	Efficient Electrochemical Reduction of CO ₂ by Ni–N Catalysts with Tunable Performance. ACS Sustainable Chemistry and Engineering, 2019, 7, 15030-15035.	6.7	40
56	Techniques and methodologies in modern electrocatalysis: evaluation of activity, selectivity and stability of catalytic materials. Analyst, The, 2014, 139, 1274.	3.5	38
57	Co ₃ O ₄ –MnO ₂ –CNT Hybrids Synthesized by HNO ₃ Vapor Oxidation of Catalytically Grown CNTs as OER Electrocatalysts. ChemCatChem, 2015, 7, 3027-3035.	3.7	38
58	Promoting effect of nitrogen doping on carbon nanotube-supported RuO2 applied in the electrocatalytic oxygen evolution reaction. Journal of Energy Chemistry, 2016, 25, 282-288.	12.9	38
59	Systematic Selection of Metalloporphyrinâ€Based Catalysts for Oxygen Reduction by Modulation of the Donor–Acceptor Intermolecular Hardness. Chemistry - A European Journal, 2013, 19, 9644-9654.	3.3	37
60	A Simple Approach towards Highâ€Performance Perovskiteâ€Based Bifunctional Oxygen Electrocatalysts. ChemElectroChem, 2016, 3, 138-143.	3.4	37
61	Lignosulfonate biomass derived N and S co-doped porous carbon for efficient oxygen reduction reaction. Sustainable Energy and Fuels, 2018, 2, 1820-1827.	4.9	37
62	Carbon nanotubes modified with electrodeposited metal porphyrins and phenanthrolines for electrocatalytic applications. Electrochimica Acta, 2010, 55, 7597-7602.	5.2	35
63	Tuning the oxidation state of manganese oxide nanoparticles on oxygen- and nitrogen-functionalized carbon nanotubes for the electrocatalytic oxygen evolution reaction. Physical Chemistry Chemical Physics, 2017, 19, 18434-18442.	2.8	34
64	Application of SECM in tracing of hydrogen peroxide at multicomponent non-noble electrocatalyst films for the oxygen reduction reaction. Catalysis Today, 2013, 202, 55-62.	4.4	33
65	Achieving Highly Selective Electrocatalytic CO ₂ Reduction by Tuning CuO-Sb ₂ O ₃ Nanocomposites. ACS Sustainable Chemistry and Engineering, 2020, 8, 4948-4954.	6.7	33
66	Synergistic catalysis of CuO/In ₂ O ₃ composites for highly selective electrochemical CO ₂ reduction to CO. Chemical Communications, 2019, 55, 12380-12383.	4.1	32
67	Oxidative Deposition of Manganese Oxide Nanosheets on Nitrogen-Functionalized Carbon Nanotubes Applied in the Alkaline Oxygen Evolution Reaction. ACS Omega, 2018, 3, 11216-11226.	3.5	31
68	Characterisation of bifunctional electrocatalysts for oxygen reduction and evolution by means of SECM. Journal of Solid State Electrochemistry, 2016, 20, 1019-1027.	2.5	30
69	Enhancing the Selectivity between Oxygen and Chlorine towards Chlorine during the Anodic Chlorine Evolution Reaction on a Dimensionally Stable Anode. ChemElectroChem, 2019, 6, 3108-3112.	3.4	29
70	Enhancing the water splitting performance of cryptomelane-type α-(K)MnO2. Journal of Catalysis, 2019, 374, 335-344.	6.2	27
71	Bipolar Electrochemistry for Concurrently Evaluating the Stability of Anode and Cathode Electrocatalysts and the Overall Cell Performance during Long-Term Water Electrolysis. Analytical Chemistry, 2016, 88, 8835-8840.	6.5	26
72	Influence of Ni to Co ratio in mixed Co and Ni phosphides on their electrocatalytic oxygen evolution activity. Electrochemistry Communications, 2017, 79, 41-45.	4.7	25

#	Article	IF	CITATIONS
73	How to minimise destabilising effect of gas bubbles on water splitting electrocatalysts?. Current Opinion in Electrochemistry, 2021, 30, 100797.	4.8	24
74	Enhanced Electrocatalytic Stability of Platinum Nanoparticles Supported on a Nitrogenâ€Doped Composite of Carbon Nanotubes and Mesoporous Titania under Oxygen Reduction Conditions. ChemSusChem, 2012, 5, 523-525.	6.8	23
75	Pd deposited on functionalized carbon nanotubes for the electrooxidation of ethanol in alkaline media. Electrochemistry Communications, 2016, 63, 30-33.	4.7	23
76	Hollow CeO ₂ @Co ₂ N Nanosheets Derived from Coâ€ZIF‣ for Boosting the Oxygen Evolution Reaction. Advanced Materials Interfaces, 2021, 8, 2100041.	3.7	23
77	On the Theory of Electrolytic Dissociation, the Greenhouse Effect, and Activation Energy in (Electro)Catalysis: A Tribute to Svante Augustus Arrhenius. Chemistry - A European Journal, 2019, 25, 158-166.	3.3	22
78	Significant enhancement of the oxygen reduction activity of self-heteroatom doped coal derived carbon through oxidative pretreatment. Electrochimica Acta, 2019, 312, 22-30.	5.2	21
79	Electrocatalytic Oxidation of Glycerol Using Solid‣tate Synthesised Nickel Boride: Impact of Key Electrolysis Parameters on Product Selectivity. ChemElectroChem, 2021, 8, 2336-2342.	3.4	21
80	Evaluation of kinetic constants on porous, non-noble catalyst layers for oxygen reduction—A comparative study between SECM and hydrodynamic methods. Catalysis Today, 2016, 262, 74-81.	4.4	20
81	Insights into the Formation, Chemical Stability, and Activity of Transient Ni _{<i>y</i>} P@NiO <i>x</i> Core–Shell Heterostructures for the Oxygen Evolution Reaction. ACS Applied Energy Materials, 2020, 3, 2304-2309.	5.1	20
82	Overcoming the Instability of Nanoparticleâ€Based Catalyst Films in Alkaline Electrolyzers by using Selfâ€Assembling and Selfâ€Healing Films. Angewandte Chemie - International Edition, 2017, 56, 8573-8577.	13.8	19
83	Traditional earth-abundant coal as new energy materials to catalyze the oxygen reduction reaction in alkaline solution. Electrochimica Acta, 2016, 211, 568-575.	5.2	18
84	Simple conversion of earth-abundant coal to high-performance bifunctional catalysts for reversible oxygen electrodes. Catalysis Science and Technology, 2018, 8, 1104-1112.	4.1	18
85	Oxygen-deficient titania as alternative support for Pt catalysts for the oxygen reduction reaction. Journal of Energy Chemistry, 2014, 23, 701-707.	12.9	17
86	Promotional Effect of Fe Impurities in Graphene Precursors on the Activity of MnO _X /Graphene Electrocatalysts for the Oxygen Evolution and Oxygen Reduction Reactions. ChemElectroChem, 2017, 4, 2835-2841.	3.4	17
87	Co-Mn Hybrid Oxides Supported on N-Doped Graphene as Efficient Electrocatalysts for Reversible Oxygen Electrodes. Journal of the Electrochemical Society, 2018, 165, H580-H589.	2.9	17
88	Optimizing the synthesis of Co/Co–Fe nanoparticles/N-doped carbon composite materials as bifunctional oxygen electrocatalysts. Electrochimica Acta, 2019, 318, 281-289.	5.2	17
89	Sauerstoffevolutionselektrokatalyse eines einzelnen MOFâ€basierten Kompositnanopartikels an der Spitze einer Nanoelektrode. Angewandte Chemie, 2019, 131, 9021-9026.	2.0	17
90	Microwave-Assisted Synthesis of Co/CoO _x Supported on Earth-Abundant Coal-Derived Carbon for Electrocatalysis of Oxygen Evolution. Journal of the Electrochemical Society, 2019, 166, F479-F486.	2.9	17

#	Article	IF	CITATIONS
91	Polybenzoxazineâ€Derived Nâ€doped Carbon as Matrix for Powderâ€Based Electrocatalysts. ChemSusChem, 2017, 10, 2653-2659.	6.8	16
92	Few-layer graphene modified with nitrogen-rich metallo-macrocyclic complexes as precursor for bifunctional oxygen electrocatalysts. Electrochimica Acta, 2016, 222, 1191-1199.	5.2	15
93	Fixierung von NiFeâ€Hydrotalkitâ€Pulverkatalysatoren für die postelektrolytische strukturelle Charakterisierung von Elektrokatalysatoren für die Sauerstoffevolution. Angewandte Chemie, 2017, 129, 11411-11416.	2.0	15
94	Fatty Acid Composition of Muscle, Liver, and Adipose Tissue of Freshwater Fish from Lake Victoria, Uganda. Journal of Aquatic Food Product Technology, 2011, 20, 64-72.	1.4	14
95	The two Janus faces in oxygen evolution electrocatalysis: Activity versus stability of layered double hydroxides. Current Opinion in Electrochemistry, 2017, 4, 4-10.	4.8	14
96	Utilization of the catalyst layer of dimensionally stable anodes. Part 2: Impact of spatial current distribution on electrocatalytic performance. Journal of Electroanalytical Chemistry, 2018, 828, 63-70.	3.8	14
97	Elektrokatalyse als Nexus für nachhaltige erneuerbare Energien – der gordische Knoten aus AktivitÃष्ठ Stabilitäund SelektivitÃष Angewandte Chemie, 2020, 132, 15410-15426.	2.0	14
98	Cobalt metalloid and polybenzoxazine derived composites for bifunctional oxygen electrocatalysis. Electrochimica Acta, 2019, 297, 1042-1051.	5.2	13
99	Onlineâ€Bestimmung der elektrochemischen Kohlenstoffkorrosion in alkalischen Elektrolyten durch differentielle elektrochemische Massenspektrometrie. Angewandte Chemie, 2020, 132, 1601-1605.	2.0	13
100	Breaking scaling relations in electrocatalysis. Journal of Solid State Electrochemistry, 2020, 24, 2181-2182.	2.5	13
101	Synergistic Effect of Molybdenum and Tungsten in Highly Mixed Carbide Nanoparticles as Effective Catalysts in the Hydrogen Evolution Reaction under Alkaline and Acidic Conditions. ChemElectroChem, 2020, 7, 983-988.	3.4	13
102	Overcoming cathode poisoning from electrolyte impurities in alkaline electrolysis by means of self-healing electrocatalyst films. Nano Energy, 2018, 53, 763-768.	16.0	12
103	Coupling electrochemistry with a fluorescence reporting reaction enabled by bipolar electrochemistry. Journal of Electroanalytical Chemistry, 2020, 872, 113921.	3.8	12
104	Differentiation between Carbon Corrosion and Oxygen Evolution Catalyzed by Ni x B/C Hybrid Electrocatalysts in Alkaline Solution using Differential Electrochemical Mass Spectrometry. ChemElectroChem, 2020, 7, 2680-2686.	3.4	11
105	Nitrogen-doped carbon cloth as a stable self-supported cathode catalyst for air/H2-breathing alkaline fuel cells. Electrochimica Acta, 2015, 182, 312-319.	5.2	10
106	The sum is more than its parts: stability of MnFe oxide nanoparticles supported on oxygen-functionalized multi-walled carbon nanotubes at alternating oxygen reduction reaction and oxygen evolution reaction conditions. Journal of Solid State Electrochemistry, 2020, 24, 2901-2906.	2.5	10
107	Fatty acids of polar lipids in heart tissue are good taxonomic markers for tropical African freshwater fish. African Journal of Aquatic Science, 2011, 36, 115-127.	1.1	9
108	Very low amount of TiO ₂ on N-doped carbon nanotubes significantly improves oxygen reduction activity and stability of supported Pt nanoparticles. Physical Chemistry Chemical Physics, 2015, 17, 10767-10773.	2.8	9

#	Article	IF	CITATIONS
109	CoFe–OH Double Hydroxide Films Electrodeposited on Ni-Foam as Electrocatalyst for the Oxygen Evolution Reaction. Zeitschrift Fur Physikalische Chemie, 2020, 234, 995-1019.	2.8	9
110	Scanning Electrochemical Microscopy for Investigation of Multicomponent Bioelectrocatalytic Films. ECS Transactions, 2011, 35, 33-44.	0.5	8
111	Micrometer-Precise Determination of the Thin Electrolyte Layer of a Spectroelectrochemical Cell by Microelectrode Approach Curves. Analytical Chemistry, 2017, 89, 4367-4372.	6.5	8
112	Electrocatalysis in confined space. Current Opinion in Electrochemistry, 2021, 25, 100644.	4.8	8
113	Fundamental Studies on the Electrocatalytic Properties of Metal Macrocyclics and Other Complexes for the Electroreduction of O2. Lecture Notes in Energy, 2013, , 157-212.	0.3	7
114	Electrochemical sensor for nitric oxide using layered films composed of a polycationic dendrimer and nickel(II) phthalocyaninetetrasulfonate deposited on a carbon fiber electrode. Mikrochimica Acta, 2015, 182, 1079-1087.	5.0	7
115	NH ₃ Postâ€Treatment Induces High Activity of Coâ€Based Electrocatalysts Supported on Carbon Nanotubes for the Oxygen Evolution Reaction. ChemElectroChem, 2017, 4, 2091-2098.	3.4	7
116	Electrocatalysis Beyond 2020: How to Tune the Preexponential Frequency Factor. ChemElectroChem, 2022, 9, .	3.4	5
117	Perspective on experimental evaluation of adsorption energies at solid/liquid interfaces. Journal of Solid State Electrochemistry, 2021, 25, 33-42.	2.5	4
118	Trace Metal Loading of Bâ€Nâ€Coâ€doped Graphitic Carbon for Active and Stable Bifunctional Oxygen Reduction and Oxygen Evolution Electrocatalysts. ChemElectroChem, 2021, 8, 1685-1693.	3.4	4
119	A Combinatorial Approach for Optimization of Oxygen Evolution Catalyst Loading on Moâ€doped BiVO ₄ Photoanodes. Electroanalysis, 2019, 31, 1500-1506.	2.9	3
120	Rücktitelbild: Eine Stickstoff-dotierte Kohlenstoffmatrix mit eingeschlossenen MnxOy/NC- und CoxOy/NC-Nanopartikeln für leistungsfÃ h ige bifunktionale Sauerstoffelektroden (Angew. Chem.) Tj ETQq0 0 0	rg₿₫ /Ove	erlæck 10 Tf 5
121	Importance of catalyst–photoabsorber interface design configuration on the performance of Mo-doped BiVO4 water splitting photoanodes. Journal of Solid State Electrochemistry, 2021, 25, 173-185.	2.5	2
122	2D Metal-Organic Frameworks: Ultrathin 2D Cobalt Zeolite-Imidazole Framework Nanosheets for Electrocatalytic Oxygen Evolution (Adv. Sci. 11/2018). Advanced Science, 2018, 5, 1870072.	11.2	1
123	Recent Advances in Electrode Materials for Electrochemical CO2Reduction. ACS Symposium Series, 2020, , 49-91.	0.5	1
124	Recovering activity of anodically challenged oxygen reduction electrocatalysts by means of reductive potential pulses. Electrochemistry Communications, 2021, 124, 106960.	4.7	1
125	Electrocatalysis: Nanoporous Nitrogenâ€Đoped Graphene Oxide/Nickel Sulfide Composite Sheets Derived from a Metalâ€Organic Framework as an Efficient Electrocatalyst for Hydrogen and Oxygen Evolution (Adv. Funct. Mater. 33/2017). Advanced Functional Materials, 2017, 27, .	14.9	1
126	Application of Scanning Electrochemical Microscopy (SECM) to Study Electrocatalysis of Oxygen Reduction by MN4-Macrocyclic Complexes. , 2016, , 103-141.		0

#	Article	IF	CITATIONS
127	Co/Co-Fe Nanoparticles/N-Doped Carbon Composite as Bifunctional Electrocatalyst for Rechargeable Metal-Air Batteries. ECS Meeting Abstracts, 2018, , .	0.0	0
128	Enhancing the Activity and Stability of Manganese Oxide-Based Catalysts for the Electrochemical Oxygen Evolution Reaction. ECS Meeting Abstracts, 2018, , .	0.0	0
129	Celebrating Wolfgang Schuhmann's 65th Birthday. ChemElectroChem, 0, , .	3.4	Ο