
Pascal Silberzan

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6489214/publications.pdf Version: 2024-02-01

DASCAL SUREDZAN

#	Article	IF	CITATIONS
1	In vitro bone metastasis dwelling in a 3D bioengineered niche. Biomaterials, 2021, 269, 120624.	11.4	17
2	The 2020 motile active matter roadmap. Journal of Physics Condensed Matter, 2020, 32, 193001.	1.8	242
3	Cancer-associated fibroblast heterogeneity in axillary lymph nodes drives metastases in breast cancer through complementary mechanisms. Nature Communications, 2020, 11, 404.	12.8	230
4	Local light-activation of the Src oncoprotein in an epithelial monolayer promotes collective extrusion. Communications Physics, 2019, 2, .	5.3	13
5	Collective stresses drive competition between monolayers of normal and Ras-transformed cells. Soft Matter, 2019, 15, 537-545.	2.7	23
6	Spontaneous shear flow in confined cellular nematics. Nature Physics, 2018, 14, 728-732.	16.7	148
7	Controlling Confinement and Topology to Study Collective Cell Behaviors. Methods in Molecular Biology, 2018, 1749, 387-399.	0.9	7
8	Turbulent Dynamics of Epithelial Cell Cultures. Physical Review Letters, 2018, 120, 208101.	7.8	107
9	Collective cell migration: a physics perspective. Reports on Progress in Physics, 2017, 80, 076601.	20.1	158
10	Topological defects in confined populations of spindle-shaped cells. Nature Physics, 2017, 13, 58-62.	16.7	181
11	Mechanical cell competition kills cells via induction of lethal p53 levels. Nature Communications, 2016, 7, 11373.	12.8	162
12	RalB regulates contractility-driven cancer dissemination upon TGFÎ ² stimulation via the RhoGEF GEF-H1. Scientific Reports, 2015, 5, 11759.	3.3	31
13	Physics of active jamming during collective cellular motion in a monolayer. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 15314-15319.	7.1	334
14	Tissue fusion over nonadhering surfaces. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 9546-9551.	7.1	34
15	Architecture and migration of an epithelium on a cylindrical wire. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 5944-5949.	7.1	103
16	Emergence of collective modes and tri-dimensional structures from epithelial confinement. Nature Communications, 2014, 5, 3747.	12.8	133
17	Border Forces and Friction Control Epithelial Closure Dynamics. Biophysical Journal, 2014, 106, 65-73.	0.5	105
18	Perfect nematic order in confined monolayers of spindle-shaped cells. Soft Matter, 2014, 10, 2346-2353.	2.7	157

PASCAL SILBERZAN

#	Article	IF	CITATIONS
19	Proteins, cells, and tissues in patterned environments. Soft Matter, 2014, 10, 2337.	2.7	5
20	Interplay of RhoA and mechanical forces in collective cell migration driven by leader cells. Nature Cell Biology, 2014, 16, 217-223.	10.3	305
21	The Effects of Out of Plane Curvature on Collective Cell Migration. Biophysical Journal, 2014, 106, 357a.	0.5	1
22	Collective Cell Motion in an Epithelial Sheet Can Be Quantitatively Described by a Stochastic Interacting Particle Model. PLoS Computational Biology, 2013, 9, e1002944.	3.2	182
23	Automated velocity mapping of migrating cell populations (AVeMap). Nature Methods, 2012, 9, 1081-1083.	19.0	57
24	Modeling E. coli Tumbles by Rotational Diffusion. Implications for Chemotaxis. PLoS ONE, 2012, 7, e35412.	2.5	109
25	Orientation and Polarity in Collectively Migrating Cell Structures: Statics and Dynamics. Biophysical Journal, 2011, 100, 2566-2575.	0.5	111
26	Directional persistence of chemotactic bacteria in a traveling concentration wave. Proceedings of the United States of America, 2011, 108, 16235-16240.	7.1	167
27	Traction forces exerted by epithelial cell sheets. Journal of Physics Condensed Matter, 2010, 22, 194119.	1.8	110
28	Mathematical Description of Bacterial Traveling Pulses. PLoS Computational Biology, 2010, 6, e1000890.	3.2	71
29	Physical Model of the Dynamic Instability in an Expanding Cell Culture. Biophysical Journal, 2010, 98, 361-370.	0.5	84
30	Strength Dependence of Cadherin-Mediated Adhesions. Biophysical Journal, 2010, 98, 534-542.	0.5	223
31	Velocity Fields in a Collectively Migrating Epithelium. Biophysical Journal, 2010, 98, 1790-1800.	0.5	281
32	Activité et réponse à une blessure d'un tapis de cellules. , 2010, , 18-21.	0.1	0
33	A Nanostructure Made of a Bacterial Noncoding RNA. Journal of the American Chemical Society, 2009, 131, 17270-17276.	13.7	38
34	Microfluidics: Concepts and Applications to the Life Sciences. , 2009, , 743-774.		2
35	Traction forces and rigidity sensing regulate cell functions. Soft Matter, 2008, 4, 1836.	2.7	335
36	Rigidity-driven growth and migration of epithelial cells on microstructured anisotropic substrates. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104, 8281-8286.	7.1	341

PASCAL SILBERZAN

#	Article	IF	CITATIONS
37	Collective migration of an epithelial monolayer in response to a model wound. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104, 15988-15993.	7.1	759
38	Adhesion on Microstructured Surfaces. Journal of Adhesion, 2007, 83, 449-472.	3.0	23
39	Adhesion Enhancement through Micropatterning at Polydimethylsiloxaneâ^'Acrylic Adhesive Interfaces. Langmuir, 2007, 23, 6966-6974.	3.5	79
40	Micro-Actuators:Â When Artificial Muscles Made of Nematic Liquid Crystal Elastomers Meet Soft Lithography. Journal of the American Chemical Society, 2006, 128, 1088-1089.	13.7	329
41	Nonmuscle Myosin IIA-Dependent Force Inhibits Cell Spreading and Drives F-Actin Flow. Biophysical Journal, 2006, 91, 3907-3920.	0.5	255
42	Bouncing or sticky droplets: Impalement transitions on superhydrophobic micropatterned surfaces. Europhysics Letters, 2006, 74, 299-305.	2.0	566
43	Homophilic Interactions between Cadherin Fragments at the Single Molecule Level: An AFM Study. Langmuir, 2006, 22, 4680-4684.	3.5	21
44	Traction forces exerted through N-cadherin contacts. Biology of the Cell, 2006, 98, 721-730.	2.0	180
45	Force mapping in epithelial cell migration. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102, 2390-2395.	7.1	686
46	Is the Mechanical Activity of Epithelial Cells Controlled by Deformations or Forces?. Biophysical Journal, 2005, 89, L52-L54.	0.5	331
47	Permeation-induced flows: Consequences for silicone-based microfluidics. Europhysics Letters, 2004, 68, 412-418.	2.0	48
48	The dynamics of genomic-length DNA molecules in 100-nm channels. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101, 10979-10983.	7.1	458
49	Microfabricated arrays of elastomeric posts to study cellular mechanics. , 2004, 5345, 26.		11
50	Functionalizing Surfaces with Nickel Ions for the Grafting of Proteins. Langmuir, 2003, 19, 4138-4143.	3.5	36
51	Influence of topology on bacterial social interaction. Proceedings of the National Academy of Sciences of the United States of America, 2003, 100, 13910-13915.	7.1	176
52	Motion to Form a Quorum. Science, 2003, 301, 188-188.	12.6	130
53	Déplacement de gouttes sur un microcaténaire. Houille Blanche, 2003, 89, 37-42.	0.3	6
54	Role of Molecular Size in Ratchet Fractionation. Physical Review Letters, 2002, 89, 178301.	7.8	68

PASCAL SILBERZAN

#	Article	IF	CITATIONS
55	Ratchet-like topological structures for the control of microdrops. Applied Physics A: Materials Science and Processing, 2002, 75, 207-212.	2.3	67
56	Rectified Motion of Colloids in Asymmetrically Structured Channels. Physical Review Letters, 2002, 88, 168301.	7.8	110
57	Active atomic force microscopy cantilevers for imaging in liquids. Applied Physics Letters, 2001, 78, 2982-2984.	3.3	48
58	Moving droplets on asymmetrically structured surfaces. Physical Review E, 1999, 60, 2964-2972.	2.1	83
59	Kinetics of self-assembled silane monolayers at various temperatures: evidence of 2D foam. Thin Solid Films, 1998, 327-329, 166-171.	1.8	34
60	Wetting of Polymer Brushes by a Nematogenic Compound. Physical Review Letters, 1998, 80, 5141-5144.	7.8	16
61	Dielectrophoretic ratchets. Chaos, 1998, 8, 650-656.	2.5	91
62	Sorting of Brownian particles by the pulsed application of an asymmetric potential. Physical Review E, 1997, 56, 2025-2034.	2.1	71
63	Sessile Droplets at a Solid/Elastomer Interface. Langmuir, 1997, 13, 4910-4914.	3.5	33
64	Rencontres Physique-Biologie-Chimie de la montagne Sainte-Genevieve 1997. Journal De Physique II, 1997, 7, 1555-1575.	0.9	0
65	Temperature influence on the formation of silanized monolayers on silica: an atomic force microscopy study. Surface Science, 1996, 352-354, 369-373.	1.9	35
66	Rectified motion of a mercury drop in an asymmetric structure. Europhysics Letters, 1996, 33, 267-272.	2.0	49
67	Study of the Self-Adhesion Hysteresis of a Siloxane Elastomer Using the JKR Method. Langmuir, 1994, 10, 2466-2470.	3.5	133
68	How Are the Wetting Properties of Silanated Surfaces Affected by Their Structure? An Atomic-Force Microscopy Study. Europhysics Letters, 1992, 20, 633-638.	2.0	54
69	Spreading of high molecular weight polymer melts on high-energy surfaces. Macromolecules, 1992, 25, 1267-1271.	4.8	62
70	Silanation of silica surfaces. A new method of constructing pure or mixed monolayers. Langmuir, 1991, 7, 1647-1651.	3.5	486
71	Langmuir-Blodgett films: From micron to angstrom. Physical Review Letters, 1991, 67, 2029-2032.	7.8	85
72	Evidence for a new spreading regime between partial and total wetting. Physical Review Letters, 1991, 66, 185-188.	7.8	51

#	Article	IF	CITATIONS
73	The spreading of drops on solid surfaces. Journal of Physics Condensed Matter, 1990, 2, SA421-SA425.	1.8	4