Azim Jinha

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6489114/publications.pdf

Version: 2024-02-01

840776 888059 26 419 11 17 h-index citations g-index papers 26 26 26 439 times ranked citing authors all docs docs citations

#	Article	IF	CITATIONS
1	Sarcomere length measurement reliability in single myofibrils. Journal of Biomechanics, 2021, 126, 110628.	2.1	4
2	On sarcomere length stability during isometric and post-active-stretch isometric contractions. Journal of Experimental Biology, $2019, 222, \ldots$	1.7	15
3	An optimal control solution to the predictive dynamics of cycling. Sport Sciences for Health, 2017, 13, 381-393.	1.3	10
4	Differences in titin segmental elongation between passive and active stretch in skeletal muscle. Journal of Experimental Biology, 2017, 220, 4418-4425.	1.7	26
5	Titin force enhancement following active stretch of skinned skeletal muscle fibres. Journal of Experimental Biology, 2017, 220, 3110-3118.	1.7	24
6	I-Band Titin Interaction with Myosin in the Muscle Sarcomere during Eccentric Contraction: The Titin Entanglement Hypothesis. Biophysical Journal, 2016, 110, 302a.	0.5	1
7	The role of sarcomere length non-uniformities in residual force enhancement of skeletal muscle myofibrils. Royal Society Open Science, 2016, 3, 150657.	2.4	36
8	Titin Hysteresis is Greater for Actively Lengthened Compared to Passively Lengthened Skeletal Muscle Sarcomeres. Biophysical Journal, 2015, 108, 460a.	0.5	0
9	Muscle strategies for leg extensions on a "Reformer―apparatus. Journal of Electromyography and Kinesiology, 2015, 25, 260-264.	1.7	5
10	Extracellular matrix integrity affects the mechanical behaviour of in-situ chondrocytes under compression. Journal of Biomechanics, 2014, 47, 1004-1013.	2.1	31
11	Titin force is enhanced in actively stretched skeletal muscle. Journal of Experimental Biology, 2014, 217, 3629-36.	1.7	90
12	An Examination of Sarcomere Length Non-Uniformities in Actively Stretched Muscle Myofibrils. Biophysical Journal, 2014, 106, 764a-765a.	0.5	0
13	An Active Role for Titin in Skeletal Muscle. Biophysical Journal, 2014, 106, 161a.	0.5	0
14	Titin Visco-Elasticity Modulated by Limiting Ig Domain Unfolding and Refolding. Biophysical Journal, 2014, 106, 161a.	0.5	0
15	Titin (Visco-) Elasticity and IG Domain Unfolding and Refolding Kinetics. Biophysical Journal, 2013, 104, 310a.	0.5	O
16	PREDICTION OF MUSCLE FORCES USING STATIC OPTIMIZATION FOR DIFFERENT CONTRACTILE CONDITIONS. Journal of Mechanics in Medicine and Biology, 2013, 13, 1350022.	0.7	9
17	Functional and Morphological Adaptations to Aging in Knee Extensor Muscles of Physically Active Men. Journal of Applied Biomechanics, 2013, 29, 535-542.	0.8	23
18	Hysteresis and Efficiency in Passive Skeletal Muscle Myofibrils. Biophysical Journal, 2012, 102, 360a.	0.5	1

AZIM JINHA

#	Article	IF	CITATION
19	Are titin properties reflected in single myofibrils?. Journal of Biomechanics, 2012, 45, 1893-1899.	2.1	27
20	Changes in patellofemoral joint contact pressures caused by vastus medialis muscle weakness. Clinical Biomechanics, 2012, 27, 595-601.	1.2	27
21	Z-Line Elongation Observed in Titin Labeled Myofibrils. Biophysical Journal, 2012, 102, 360a.	0.5	0
22	Response to Letter to the Editor regarding Jinha et al. (2009) "A task-specific validation of homogeneous non-linear optimization approaches― Journal of Theoretical Biology, 2012, 306, 145.	1.7	0
23	Active Force Augmentation for Physiologically Relevant Stretches in Myofibrils and Mechanically Isolated Sarcomeres. Biophysical Journal, 2010, 98, 346a.	0.5	O
24	Predictions of co-contraction depend critically on degrees-of-freedom in the musculoskeletal model. Journal of Biomechanics, 2006, 39, 1145-1152.	2.1	45
25	Multi-functionality of the cat medical gastrocnemius during locomotion. Journal of Biomechanics, 2005, 38, 1291-1301.	2.1	16
26	Analytic analysis of the force sharing among synergistic muscles in one- and two-degree-of-freedom models. Journal of Biomechanics, 2000, 33, 1423-1432.	2.1	29