
Xiang-Tian Kong

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6488807/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Engineering Strongly Chiral Plasmonic Lattices with Achiral Unit Cells for Sensing and Photodetection. Advanced Optical Materials, 2022, 10, .	7.3	26
2	Chiral Bioinspired Plasmonics: A Paradigm Shift for Optical Activity and Photochemistry. ACS Photonics, 2022, 9, 2219-2236.	6.6	26
3	Chiral Optofluidics with a Plasmonic Metasurface Using the Photothermal Effect. ACS Nano, 2021, 15, 16357-16367.	14.6	23
4	Abnormal Spatial Shifts in Graphene Measured via the Beam Displacement Amplification Technique: Implications for Sensors Based on the Goos–Hächen Effect. ACS Applied Nano Materials, 2021, 4, 13477-13485.	5.0	2
5	Plasmonic Chirality and Circular Dichroism in Bioassembled and Nonbiological Systems: Theoretical Background and Recent Progress. Advanced Materials, 2020, 32, e1801790.	21.0	89
6	Efficiency of Hot-Electron Generation in Plasmonic Nanocrystals with Complex Shapes: Surface-Induced Scattering, Hot Spots, and Interband Transitions. ACS Photonics, 2020, 7, 2807-2824.	6.6	55
7	Infrared plasmonics: STEM-EELS characterization of Fabry-Pérot resonance damping in gold nanowires. Physical Review B, 2020, 101, .	3.2	18
8	Far-field midinfrared superresolution imaging and spectroscopy of single high aspect ratio gold nanowires. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 2288-2293.	7.1	28
9	Broadband chiral hybrid plasmon modes on nanofingernail substrates. Nanoscale, 2020, 12, 3827-3833.	5.6	2
10	Large graphene-induced shift of surface-plasmon resonances of gold films: Effective-medium theory for atomically thin materials. Physical Review Research, 2020, 2, .	3.6	4
11	Fabrication of Anisotropic Silver Nanoplatelets on the Surface of TiO ₂ Fibers for Enhanced Photocatalysis of a Chemical Warfare Agent Simulant, Methyl Paraoxon. Journal of Physical Chemistry C, 2019, 123, 19579-19587.	3.1	16
12	Active Far-Field Control of the Thermal Near-Field <i>via</i> Plasmon Hybridization. ACS Nano, 2019, 13, 9655-9663.	14.6	23
13	Chiral Plasmonic Nanostructures Enabled by Bottom-Up Approaches. Annual Review of Physical Chemistry, 2019, 70, 275-299.	10.8	106
14	Strong Quantum Confinement Effects and Chiral Excitons in Bio-Inspired ZnO–Amino Acid Cocrystals. Journal of Physical Chemistry C, 2018, 122, 6348-6356.	3.1	13
15	Plasmonic Glasses and Films Based on Alternative Inexpensive Materials for Blocking Infrared Radiation. Nano Letters, 2018, 18, 3147-3156.	9.1	43
16	Quantum Dots: Nearâ€Infrared, Heavy Metalâ€Free Colloidal "Giant―Core/Shell Quantum Dots (Adv.) Tj ETG	2q0.0_0 rg	BT ₅ /Overlock
17	Photothermal Circular Dichroism Induced by Plasmon Resonances in Chiral Metamaterial Absorbers and Bolometers. Nano Letters, 2018, 18, 2001-2008.	9.1	123

```
18Traveling Hot Spots in Plasmonic Photocatalysis: Manipulating Interparticle Spacing for Realâ€Time<br/>Control of Electron Injection. ChemCatChem, 2018, 10, 1561-1565.3.720
```

XIANG-TIAN KONG

#	Article	IF	CITATIONS
19	Nearâ€Infrared, Heavy Metalâ€Free Colloidal "Giant―Core/Shell Quantum Dots. Advanced Energy Materials, 2018, 8, 1701432.	19.5	90
20	Tunable Nonthermal Distribution of Hot Electrons in a Semiconductor Injected from a Plasmonic Gold Nanostructure. ACS Nano, 2018, 12, 7117-7126.	14.6	65
21	Optoelectronic Properties in Nearâ€Infrared Colloidal Heterostructured Pyramidal "Giant―Core/Shell Quantum Dots. Advanced Science, 2018, 5, 1800656.	11.2	63
22	Understanding Hot-Electron Generation and Plasmon Relaxation in Metal Nanocrystals: Quantum and Classical Mechanisms. ACS Photonics, 2017, 4, 2759-2781.	6.6	233
23	Mid-infrared Plasmonic Circular Dichroism Generated by Graphene Nanodisk Assemblies. Nano Letters, 2017, 17, 5099-5105.	9.1	18
24	Near-Infrared Plasmonic Copper Nanocups Fabricated by Template-Assisted Magnetron Sputtering. ACS Photonics, 2017, 4, 2881-2890.	6.6	14
25	Enhanced generation and anisotropic Coulomb scattering of hot electrons in an ultra-broadband plasmonic nanopatch metasurface. Nature Communications, 2017, 8, 986.	12.8	57
26	Plasmonic Nanostars with Hot Spots for Efficient Generation of Hot Electrons under Solar Illumination. Advanced Optical Materials, 2017, 5, .	7.3	79
27	Polarization dependence of graphene transient optical response: interplay between incident direction and anisotropic distribution of nonequilibrium carriers. Journal of the Optical Society of America B: Optical Physics, 2017, 34, 218.	2.1	6
28	Boosting Hot Electron-Driven Photocatalysis through Anisotropic Plasmonic Nanoparticles with Hot Spots in Au–TiO ₂ Nanoarchitectures. Journal of Physical Chemistry C, 2016, 120, 11690-11699.	3.1	201
29	Graphene plasmon propagation on corrugated silicon substrates. Optics Letters, 2015, 40, 1.	3.3	29
30	Graphene-Based Ultrathin Flat Lenses. ACS Photonics, 2015, 2, 200-207.	6.6	70
31	Making transient optical reflection of graphene polarization dependent. Optics Express, 2015, 23, 24177.	3.4	5
32	Sign of differential reflection and transmission in pump-probe spectroscopy of graphene on dielectric substrate. Photonics Research, 2015, 3, A1.	7.0	12
33	Substrate Phononâ€Mediated Plasmon Hybridization in Coplanar Graphene Nanostructures for Broadband Plasmonic Circuits. Small, 2015, 11, 591-596.	10.0	11
34	Optical properties of graphene plasmons and their potential applications. Wuli Xuebao/Acta Physica Sinica, 2015, 64, 106801.	0.5	11
35	Enhanced reflection from inverse tapered nanocone arrays. Applied Physics Letters, 2014, 105, .	3.3	23
36	Plasmonic extinction of gated graphene nanoribbon array analyzed by a scaled uniform Fermi level. Optics Letters, 2014, 39, 1345.	3.3	9

XIANG-TIAN KONG

#	Article	IF	CITATIONS
37	Fabrication and Optical Properties of Inclined Au Nanocup Arrays. Plasmonics, 2013, 8, 1607-1611.	3.4	2
38	Polarization-dependent optical absorption of graphene under total internal reflection. Applied Physics Letters, 2013, 102, .	3.3	95
39	Nanostructure Fabricated by Nanosphere Lithography Assisted with O ₂ Plasma Treatment. Journal of Nanoscience and Nanotechnology, 2013, 13, 4311-4315.	0.9	1
40	Mode converter in metal-insulator-metal plasmonic waveguide designed by transformation optics. Optics Express, 2013, 21, 9437.	3.4	23
41	Optical properties of metal-multi-insulator-metal plasmonic waveguides. Optics Express, 2012, 20, 12133.	3.4	13
42	Sensitive Real-Time Monitoring of Refractive Indexes Using a Novel Graphene-Based Optical Sensor. Scientific Reports, 2012, 2, 908.	3.3	72
43	Polarization dependence and independence of near-field enhancement through a subwavelength circle hole. Optics Express, 2010, 18, 5854.	3.4	8
44	Fabry–Perot resonance in slit and grooves to enhance the transmission through a single subwavelength slit. Journal of Optics, 2009, 11, 105002.	1.5	20
45	Enhanced transmission through a subwavelength slit surrounded by periodic dielectric bars above the metal surface. Journal of Optics, 2008, 10, 095202.	1.5	2