List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6488067/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Adaptive Responses of <i>Pseudomonas aeruginosa</i> to Treatment with Antibiotics. Antimicrobial Agents and Chemotherapy, 2022, 66, AAC0087821.	3.2	7
2	RNA Thermometer-coordinated Assembly of the Yersinia Injectisome. Journal of Molecular Biology, 2022, 434, 167667.	4.2	7
3	Inverse folding based pre-training for the reliable identification of intrinsic transcription terminators. PLoS Computational Biology, 2022, 18, e1010240.	3.2	1
4	A LysRâ€ŧype transcriptional regulator controls the expression of numerous small RNAs in <i>Agrobacterium tumefaciens</i> . Molecular Microbiology, 2021, 116, 126-139.	2.5	9
5	A Salmonella Typhi RNA thermosensor regulates virulence factors and innate immune evasion in response to host temperature. PLoS Pathogens, 2021, 17, e1009345.	4.7	18
6	A Novel, Universally Active C-terminal Protein Degradation Signal Generated by Alternative Splicing. Journal of Molecular Biology, 2021, 433, 166890.	4.2	1
7	OmpA, a Common Virulence Factor, Is Under RNA Thermometer Control in Yersinia pseudotuberculosis. Frontiers in Microbiology, 2021, 12, 687260.	3.5	6
8	Promiscuous phospholipid biosynthesis enzymes in the plant pathogen Pseudomonas syringae. Biochimica Et Biophysica Acta - Molecular and Cell Biology of Lipids, 2021, 1866, 158926.	2.4	6
9	Phospholipid N -Methyltransferases Produce Various Methylated Phosphatidylethanolamine Derivatives in Thermophilic Bacteria. Applied and Environmental Microbiology, 2021, 87, e0110521.	3.1	1
10	Synthesis of the unusual lipid bis(monoacylglycero)phosphate in environmental bacteria. Environmental Microbiology, 2021, 23, 6993-7008.	3.8	2
11	Recombinant and endogenous ways to produce methylated phospholipids in Escherichia coli. Applied Microbiology and Biotechnology, 2021, 105, 8837-8851.	3.6	5
12	The gatekeeper of Yersinia type III secretion is under RNA thermometer control. PLoS Pathogens, 2021, 17, e1009650.	4.7	8
13	Agrobacterium tumefaciens Type IV and Type VI Secretion Systems Reside in Detergent-Resistant Membranes. Frontiers in Microbiology, 2021, 12, 754486.	3.5	5
14	Arginine-Rich Small Proteins with a Domain of Unknown Function, DUF1127, Play a Role in Phosphate and Carbon Metabolism of Agrobacterium tumefaciens. Journal of Bacteriology, 2020, 202, .	2.2	14
15	Lon Protease Removes Excess Signal Recognition Particle Protein in <i>Escherichia coli</i> . Journal of Bacteriology, 2020, 202, .	2.2	13
16	Regulation of OmpA Translation and Shigella dysenteriae Virulence by an RNA Thermometer. Infection and Immunity, 2020, 88, .	2.2	12
17	Lead-seq: transcriptome-wide structure probing in vivo using lead(II) ions. Nucleic Acids Research, 2020, 48, e71-e71.	14.5	24
18	An RNA thermometer dictates production of a secreted bacterial toxin. PLoS Pathogens, 2020, 16, e1008184.	4.7	24

#	Article	IF	CITATIONS
19	The RNase YbeY Is Vital for Ribosome Maturation, Stress Resistance, and Virulence of the Natural Genetic Engineer Agrobacterium tumefaciens. Journal of Bacteriology, 2019, 201, .	2.2	8
20	An unconventional RNA-based thermosensor within the 5' UTR of Staphylococcus aureus cidA. PLoS ONE, 2019, 14, e0214521.	2.5	13
21	Coordinated regulation of nitrogen fixation and molybdate transport by molybdenum. Molecular Microbiology, 2019, 111, 17-30.	2.5	39
22	Virulence of <i>Agrobacteriumtumefaciens</i> requires lipid homeostasis mediated by the lysylâ€phosphatidylglycerol hydrolase AcvB. Molecular Microbiology, 2019, 111, 269-286.	2.5	14
23	RNA Thermometers in Bacterial Pathogens. Microbiology Spectrum, 2018, 6, .	3.0	59
24	A phosphatidic acid-binding protein is important for lipid homeostasis and adaptation to anaerobic biofilm conditions in <i>Pseudomonas aeruginosa</i> . Biochemical Journal, 2018, 475, 1885-1907.	3.7	15
25	An Integrated Proteomic Approach Uncovers Novel Substrates and Functions of the Lon Protease in <i>Escherichia coli</i> . Proteomics, 2018, 18, e1800080.	2.2	40
26	Design of a Temperature-Responsive Transcription Terminator. ACS Synthetic Biology, 2018, 7, 613-621.	3.8	18
27	A Small Regulatory RNA Controls Cell Wall Biosynthesis and Antibiotic Resistance. MBio, 2018, 9, .	4.1	14
28	Next-Generation Trapping of Protease Substrates by Label-Free Proteomics. Methods in Molecular Biology, 2018, 1841, 189-206.	0.9	2
29	Front Cover: An Integrated Proteomic Approach Uncovers Novel Substrates and Functions of the Lon Protease in Escherichia coli. Proteomics, 2018, 18, 1870111.	2.2	Ο
30	Intricate Crosstalk Between Lipopolysaccharide, Phospholipid and Fatty Acid Metabolism in Escherichia coli Modulates Proteolysis of LpxC. Frontiers in Microbiology, 2018, 9, 3285.	3.5	35
31	When, how and why? Regulated proteolysis by the essential FtsH protease in <i>Escherichia coli</i> . Biological Chemistry, 2017, 398, 625-635.	2.5	83
32	Membrane Remodeling by a Bacterial Phospholipid-Methylating Enzyme. MBio, 2017, 8, .	4.1	19
33	Systematic probing of the bacterial RNA structurome to reveal new functions. Current Opinion in Microbiology, 2017, 36, 14-19.	5.1	19
34	Modular arrangement of regulatory RNA elements. RNA Biology, 2017, 14, 287-292.	3.1	12
35	Dissection of membrane-binding and -remodeling regions in two classes of bacterial phospholipid N-methyltransferases. Biochimica Et Biophysica Acta - Biomembranes, 2017, 1859, 2279-2288.	2.6	5
36	One gene, two proteins: coordinated production of a copper chaperone by differential transcript formation andÂtranslational frameshifting in <i>Escherichia coli</i> . Molecular Microbiology, 2017, 106, 635-645.	2.5	10

#	Article	IF	CITATIONS
37	The Copper Efflux Regulator CueR Is Subject to ATP-Dependent Proteolysis in Escherichia coli. Frontiers in Molecular Biosciences, 2017, 4, 9.	3.5	12
38	Mini review: ATPâ€dependent proteases in bacteria. Biopolymers, 2016, 105, 505-517.	2.4	39
39	RNA Hairpin Folding in the Crowded Cell. Angewandte Chemie - International Edition, 2016, 55, 3224-3228.	13.8	73
40	Faltung einer RNAâ€Haarnadel in der dicht gedrägten Zelle. Angewandte Chemie, 2016, 128, 3279-3283.	2.0	10
41	Exploring the modular nature of riboswitches and RNA thermometers. Nucleic Acids Research, 2016, 44, 5410-5423.	14.5	23
42	In vivo trapping of FtsH substrates by labelâ€free quantitative proteomics. Proteomics, 2016, 16, 3161-3172.	2.2	27
43	Temperature-responsive in vitro RNA structurome of <i>Yersinia pseudotuberculosis</i> . Proceedings of the United States of America, 2016, 113, 7237-7242.	7.1	78
44	Molybdate uptake by <i>Agrobacterium tumefaciens</i> correlates with the cellular molybdenum cofactor status. Molecular Microbiology, 2016, 101, 809-822.	2.5	11
45	Unconventional membrane lipid biosynthesis in <scp><i>X</i></scp> <i>anthomonas campestris</i> . Environmental Microbiology, 2015, 17, 3116-3124.	3.8	12
46	Conditional Proteolysis of the Membrane Protein YfgM by the FtsH Protease Depends on a Novel N-terminal Degron. Journal of Biological Chemistry, 2015, 290, 19367-19378.	3.4	32
47	Mechanistic insights into temperature-dependent regulation of the simple cyanobacterial hsp17 RNA thermometer at base-pair resolution. Nucleic Acids Research, 2015, 43, 5572-5585.	14.5	24
48	Constitutive production of c-di-GMP is associated with mutations in a variant of <i>Pseudomonas aeruginosa</i> with altered membrane composition. Science Signaling, 2015, 8, ra36.	3.6	49
49	Membraneâ€binding mechanism of a bacterial phospholipid <scp>N</scp> â€methyltransferase. Molecular Microbiology, 2015, 95, 313-331.	2.5	21
50	Profound Impact of Hfq on Nutrient Acquisition, Metabolism and Motility in the Plant Pathogen Agrobacterium tumefaciens. PLoS ONE, 2014, 9, e110427.	2.5	29
51	How to find RNA thermometers. Frontiers in Cellular and Infection Microbiology, 2014, 4, 132.	3.9	23
52	Translational control of small heat shock genes in mesophilic and thermophilic cyanobacteria by RNA thermometers. RNA Biology, 2014, 11, 594-608.	3.1	20
53	Riboregulation in plant-associated α-proteobacteria. RNA Biology, 2014, 11, 550-562.	3.1	43
54	Two separate modules of the conserved regulatory RNA AbcR1 address multiple target mRNAs in and outside of the translation initiation region. RNA Biology, 2014, 11, 624-640.	3.1	40

#	Article	IF	CITATIONS
55	Membrane lipids in Agrobacterium tumefaciens: biosynthetic pathways and importance for pathogenesis. Frontiers in Plant Science, 2014, 5, 109.	3.6	34
56	NifA- and CooA-Coordinated <i>cowN</i> Expression Sustains Nitrogen Fixation by Rhodobacter capsulatus in the Presence of Carbon Monoxide. Journal of Bacteriology, 2014, 196, 3494-3502.	2.2	14
57	A tricistronic heat shock operon is important for stress tolerance of <scp><i>P</i></scp> <i>seudomonas putida</i> and conserved in many environmental bacteria. Environmental Microbiology, 2014, 16, 1835-1853.	3.8	20
58	Temperature-driven differential gene expression by RNA thermosensors. Biochimica Et Biophysica Acta - Gene Regulatory Mechanisms, 2014, 1839, 978-988.	1.9	62
59	Phosphatidylcholine biosynthesis in <scp><i>X</i></scp> <i>anthomonas campestris</i> via a yeastâ€like acylation pathway. Molecular Microbiology, 2014, 91, 736-750.	2.5	35
60	Discovery of a bifunctional cardiolipin/phosphatidylethanolamine synthase in bacteria. Molecular Microbiology, 2014, 92, 959-972.	2.5	23
61	Coordinated Expression of <i>fdxD</i> and Molybdenum Nitrogenase Genes Promotes Nitrogen Fixation by Rhodobacter capsulatus in the Presence of Oxygen. Journal of Bacteriology, 2014, 196, 633-640.	2.2	24
62	RNA thermometer controls temperature-dependent virulence factor expression in <i>Vibrio cholerae</i> . Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 14241-14246.	7.1	77
63	The PqsR and RhlR Transcriptional Regulators Determine the Level of Pseudomonas Quinolone Signal Synthesis in Pseudomonas aeruginosa by Producing Two Different <i>pqsABCDE</i> mRNA Isoforms. Journal of Bacteriology, 2014, 196, 4163-4171.	2.2	57
64	Enzymatic properties and substrate specificity of a bacterial phosphatidylcholine synthase. FEBS Journal, 2014, 281, 3523-3541.	4.7	13
65	Nonnative Disulfide Bond Formation Activates the Ï f 32 -Dependent Heat Shock Response in Escherichia coli. Journal of Bacteriology, 2013, 195, 2807-2816.	2.2	28
66	RNAs at fever pitch. Nature, 2013, 502, 178-179.	27.8	2
67	Evolution from the Prokaryotic to the Higher Plant Chloroplast Signal Recognition Particle: The Signal Recognition Particle RNA Is Conserved in Plastids of a Wide Range of Photosynthetic Organisms. Plant Cell, 2013, 24, 4819-4836.	6.6	37
68	FtsH-Mediated Coordination of Lipopolysaccharide Biosynthesis in Escherichia coli Correlates with the Growth Rate and the Alarmone (p)ppGpp. Journal of Bacteriology, 2013, 195, 1912-1919.	2.2	54
69	Thermozymes. RNA Biology, 2013, 10, 1009-1016.	3.1	34
70	Differential control of <i><scp>S</scp>almonella</i> heat shock operons by structured <scp>mRNAs</scp> . Molecular Microbiology, 2013, 89, 715-731.	2.5	19
71	RNA-Mediated Thermoregulation of Iron-Acquisition Genes in Shigella dysenteriae and Pathogenic Escherichia coli. PLoS ONE, 2013, 8, e63781.	2.5	60
72	Short ROSE-Like RNA Thermometers Control IbpA Synthesis in Pseudomonas Species. PLoS ONE, 2013, 8, e65168.	2.5	39

#	Article	IF	CITATIONS
73	Concerted Actions of a Thermo-labile Regulator and a Unique Intergenic RNA Thermosensor Control Yersinia Virulence. PLoS Pathogens, 2012, 8, e1002518.	4.7	144
74	Deep sequencing uncovers numerous small RNAs on all four replicons of the plant pathogen Agrobacterium tumefaciens. RNA Biology, 2012, 9, 446-457.	3.1	88
75	Transcriptional and Posttranscriptional Events Control Copper-Responsive Expression of a Rhodobacter capsulatus Multicopper Oxidase. Journal of Bacteriology, 2012, 194, 1849-1859.	2.2	20
76	A Trapping Approach Reveals Novel Substrates and Physiological Functions of the Essential Protease FtsH in Escherichia coli. Journal of Biological Chemistry, 2012, 287, 42962-42971.	3.4	67
77	IcmF Family Protein TssM Exhibits ATPase Activity and Energizes Type VI Secretion. Journal of Biological Chemistry, 2012, 287, 15610-15621.	3.4	83
78	Tellurite resistance gene trgB confers copper tolerance to Rhodobacter capsulatus. BioMetals, 2012, 25, 995-1008.	4.1	5
79	Thermogenetic tools to monitor temperature-dependent gene expression in bacteria. Journal of Biotechnology, 2012, 160, 55-63.	3.8	39
80	Hfq Influences Multiple Transport Systems and Virulence in the Plant Pathogen Agrobacterium tumefaciens. Journal of Bacteriology, 2012, 194, 5209-5217.	2.2	68
81	Characterization of Damage to Bacteria and Bio-macromolecules Caused by (V)UV Radiation and Particles Generated by a Microscale Atmospheric Pressure Plasma Jet. NATO Science for Peace and Security Series A: Chemistry and Biology, 2012, , 17-29.	0.5	6
82	One out of Four: HspL but No Other Small Heat Shock Protein of Agrobacterium tumefaciens Acts as Efficient Virulence-Promoting VirB8 Chaperone. PLoS ONE, 2012, 7, e49685.	2.5	12
83	The Role of VUV Radiation in the Inactivation of Bacteria with an Atmospheric Pressure Plasma Jet. Plasma Processes and Polymers, 2012, 9, 561-568.	3.0	66
84	Bacterial RNA thermometers: molecular zippers and switches. Nature Reviews Microbiology, 2012, 10, 255-265.	28.6	338
85	Structure and function of the bacterial AAA protease FtsH. Biochimica Et Biophysica Acta - Molecular Cell Research, 2012, 1823, 40-48.	4.1	153
86	Control of Bacterial Heat Shock and Virulence Genes by RNA Thermometers. , 2012, , 183-193.		1
87	Modulation of the stability of the Salmonella fourU-type RNA thermometer. Nucleic Acids Research, 2011, 39, 8258-8270.	14.5	61
88	<i>S</i> -Adenosylmethionine-Binding Properties of a Bacterial Phospholipid <i>N</i> -Methyltransferase. Journal of Bacteriology, 2011, 193, 3473-3481.	2.2	21
89	Separation of VUV/UV photons and reactive particles in the effluent of a He/O ₂ atmospheric pressure plasma jet. Journal Physics D: Applied Physics, 2011, 44, 295201. 	2.8	52
90	Small RNAâ€mediated control of the <i>Agrobacterium tumefaciens</i> GABA binding protein. Molecular Microbiology, 2011, 80, 492-506.	2.5	65

#	Article	IF	CITATIONS
91	The <i>Escherichia coli</i> replication inhibitor CspD is subject to growthâ€regulated degradation by the Lon protease. Molecular Microbiology, 2011, 80, 1313-1325.	2.5	43
92	Choline Uptake in Agrobacterium tumefaciens by the High-Affinity ChoXWV Transporter. Journal of Bacteriology, 2011, 193, 5119-5129.	2.2	12
93	Control of Lipopolysaccharide Biosynthesis by FtsH-Mediated Proteolysis of LpxC Is Conserved in Enterobacteria but Not in All Gram-Negative Bacteria. Journal of Bacteriology, 2011, 193, 1090-1097.	2.2	53
94	Translation on demand by a simple RNA-based thermosensor. Nucleic Acids Research, 2011, 39, 2855-2868.	14.5	88
95	Multiple layers of control govern expression of the Escherichia coli ibpAB heat-shock operon. Microbiology (United Kingdom), 2011, 157, 66-76.	1.8	55
96	Proteomic and transcriptomic characterization of a virulence-deficient phosphatidylcholine-negative Agrobacterium tumefaciens mutant. Molecular Genetics and Genomics, 2010, 283, 575-589.	2.1	30
97	Phosphatidylcholine biosynthesis and its significance in bacteria interacting with eukaryotic cells. European Journal of Cell Biology, 2010, 89, 888-894.	3.6	76
98	Relevance of individual Mo-box nucleotides to DNA binding by the related molybdenum-responsive regulators MopA and MopB in Rhodobacter capsulatus. FEMS Microbiology Letters, 2010, 307, 191-200.	1.8	10
99	A <i>Rhodobacter capsulatus</i> Member of a Universal Permease Family Imports Molybdate and Other Oxyanions. Journal of Bacteriology, 2010, 192, 5943-5952.	2.2	41
100	Translational control of bacterial heat shock and virulence genes by temperature-sensing mRNAs. RNA Biology, 2010, 7, 84-89.	3.1	81
101	The Small Heat-shock Protein HspL Is a VirB8 Chaperone Promoting Type IV Secretion-mediated DNA Transfer. Journal of Biological Chemistry, 2010, 285, 19757-19766.	3.4	21
102	Direct observation of the temperature-induced melting process of the Salmonella fourU RNA thermometer at base-pair resolution. Nucleic Acids Research, 2010, 38, 3834-3847.	14.5	105
103	Region C of the Escherichia coli heat shock sigma factor RpoH (lf 32) contains a turnover element for proteolysis by the FtsH protease. FEMS Microbiology Letters, 2009, 290, 199-208.	1.8	20
104	Expression and Physiological Relevance of Agrobacterium tumefaciens Phosphatidylcholine Biosynthesis Genes. Journal of Bacteriology, 2009, 191, 365-374.	2.2	38
105	Specific Interactions between Four Molybdenum-Binding Proteins Contribute to Mo-Dependent Gene Regulation in <i>Rhodobacter capsulatus</i> . Journal of Bacteriology, 2009, 191, 5205-5215.	2.2	13
106	The <i>Escherichia coli</i> ibpA thermometer is comprised of stable and unstable structural elements. RNA Biology, 2009, 6, 455-463.	3.1	54
107	In Vitro Characterization of the Enzyme Properties of the Phospholipid <i>N</i> -Methyltransferase PmtA from <i>Agrobacterium tumefaciens</i> . Journal of Bacteriology, 2009, 191, 2033-2041.	2.2	25
108	Microbial thermosensors. Cellular and Molecular Life Sciences, 2009, 66, 2661-2676.	5.4	158

#	Article	IF	CITATIONS
109	Two different stator systems drive a single polar flagellum in <i>Shewanella oneidensis</i> MRâ€I. Molecular Microbiology, 2009, 71, 836-850.	2.5	139
110	Regulatory RNAs in prokaryotes: here, there and everywhere. Molecular Microbiology, 2009, 74, 261-269.	2.5	28
111	Degradation of cytoplasmic substrates by FtsH, a membrane-anchored protease with many talents. Research in Microbiology, 2009, 160, 652-659.	2.1	45
112	Small heat-shock protein HspL is induced by VirB protein(s) and promotes VirB/D4-mediated DNA transfer in Agrobacterium tumefaciens. Microbiology (United Kingdom), 2009, 155, 3270-3280.	1.8	23
113	Clobal consequences of phosphatidylcholine reduction in Bradyrhizobium japonicum. Molecular Genetics and Genomics, 2008, 280, 59-72.	2.1	30
114	Multiple Phospholipid <i>N</i> -Methyltransferases with Distinct Substrate Specificities Are Encoded in <i>Bradyrhizobium japonicum</i> . Journal of Bacteriology, 2008, 190, 571-580.	2.2	31
115	The GntR-Like Regulator TauR Activates Expression of Taurine Utilization Genes in <i>Rhodobacter capsulatus</i> . Journal of Bacteriology, 2008, 190, 487-493.	2.2	45
116	Generation of synthetic RNA-based thermosensors. Biological Chemistry, 2008, 389, 1319-26.	2.5	57
117	Region 2.1 of the Escherichia coli heat-shock sigma factor RpoH (σ 32) is necessary but not sufficient for degradation by the FtsH protease. Microbiology (United Kingdom), 2007, 153, 2560-2571.	1.8	18
118	Sequence and Length Recognition of the C-terminal Turnover Element of LpxC, a Soluble Substrate of the Membrane-bound FtsH Protease. Journal of Molecular Biology, 2007, 372, 485-496.	4.2	46
119	FourU: a novel type of RNA thermometer in <i>Salmonella</i> . Molecular Microbiology, 2007, 65, 413-424.	2.5	147
120	Genome-wide bioinformatic prediction and experimental evaluation of potential RNA thermometers. Molecular Genetics and Genomics, 2007, 278, 555-564.	2.1	41
121	RNA thermometers. FEMS Microbiology Reviews, 2006, 30, 3-16.	8.6	253
122	The C-terminal end of LpxC is required for degradation by the FtsH protease. Molecular Microbiology, 2006, 59, 1025-1036.	2.5	93
123	Virulence ofAgrobacterium tumefaciensrequires phosphatidylcholine in the bacterial membrane. Molecular Microbiology, 2006, 62, 906-915.	2.5	85
124	Molecular basis for temperature sensing by an RNA thermometer. EMBO Journal, 2006, 25, 2487-2497.	7.8	150
125	Overlapping and Specialized Functions of the Molybdenum-Dependent Regulators MopA and MopB in Rhodobacter capsulatus. Journal of Bacteriology, 2006, 188, 8441-8451.	2.2	33
126	Identification of a Turnover Element in Region 2.1 of Escherichia coli Ï f 32 by a Bacterial One-Hybrid Approach. Journal of Bacteriology, 2005, 187, 3807-3813.	2.2	38

#	Article	IF	CITATIONS
127	RNA thermometers are common in Î \pm - and Î 3 -proteobacteria. Biological Chemistry, 2005, 386, 1279-1286.	2.5	77
128	Replicon-Specific Regulation of Small Heat Shock Genes in Agrobacterium tumefaciens. Journal of Bacteriology, 2004, 186, 6824-6829.	2.2	29
129	Temperature and concentration-controlled dynamics of rhizobial small heat shock proteins. FEBS Journal, 2004, 271, 2494-2503.	0.2	36
130	Phosphatidylcholine levels in Bradyrhizobium japonicum membranes are critical for an efficient symbiosis with the soybean host plant. Molecular Microbiology, 2004, 39, 1186-1198.	2.5	82
131	Detection of oligomerisation and substrate recognition sites of small heat shock proteins by peptide arrays. Biochemical and Biophysical Research Communications, 2004, 325, 401-407.	2.1	37
132	Small Heat Shock Proteins OR: A Subgroup of Molecular Chaperones. Journal of Biological Sciences, 2004, 5, 1-9.	0.3	2
133	Structural and Functional Defects Caused by Point Mutations in the α-Crystallin Domain of a Bacterial α-Heat Shock Protein. Journal of Molecular Biology, 2003, 328, 927-937.	4.2	40
134	Structure-Function Studies of Escherichia coli RpoH (Ï f 32) by In Vitro Linker Insertion Mutagenesis. Journal of Bacteriology, 2003, 185, 2731-2738.	2.2	36
135	Temperature-controlled Structural Alterations of an RNA Thermometer. Journal of Biological Chemistry, 2003, 278, 47915-47921.	3.4	83
136	α-Crystallin-Type Heat Shock Proteins: Socializing Minichaperones in the Context of a Multichaperone Network. Microbiology and Molecular Biology Reviews, 2002, 66, 64-93.	6.6	480
137	mRNA-mediated detection of environmental conditions. Archives of Microbiology, 2002, 178, 404-410.	2.2	30
138	A critical motif for oligomerization and chaperone activity of bacterial α-heat shock proteins. FEBS Journal, 2002, 269, 3578-3586.	0.2	81
139	An internal region of the RpoH heat shock transcription factor is critical for rapid degradation by the FtsH protease. FEBS Letters, 2001, 493, 17-20.	2.8	18
140	ROSE elements occur in disparate rhizobia and are functionally interchangeable between species. Archives of Microbiology, 2001, 176, 44-51.	2.2	59
141	Differential degradation of Escherichia coliïƒ32 and Bradyrhizobium japonicum RpoH factors by the FtsH protease. FEBS Journal, 2000, 267, 4831-4839.	0.2	14
142	Role of HrcA and CIRCE in the Heat Shock Regulatory Network of <i>Bradyrhizobium japonicum</i> . Journal of Bacteriology, 2000, 182, 14-22.	2.2	52
143	Chaperone Activity and Homo- and Hetero-oligomer Formation of Bacterial Small Heat Shock Proteins. Journal of Biological Chemistry, 2000, 275, 37212-37218.	3.4	78
144	Two genes encoding a putative multidrug efflux pump of the RND/MFP family are cotranscribed with an rpoH gene in Bradyrhizobium japonicum. Gene, 2000, 241, 247-254.	2.2	24

FRANZ NARBERHAUS

#	Article	IF	CITATIONS
145	Proteome analysis of heat shock protein expression in Bradyrhizobium japonicum. FEBS Journal, 1999, 264, 39-48.	0.2	50
146	Negative regulation of bacterial heat shock genes. Molecular Microbiology, 1999, 31, 1-8.	2.5	224
147	Multiple Small Heat Shock Proteins in Rhizobia. Journal of Bacteriology, 1999, 181, 83-90.	2.2	90
148	Characterization of the <i>Bradyrhizobium japonicum ftsH</i> Gene and Its Product. Journal of Bacteriology, 1999, 181, 7394-7397.	2.2	4
149	TheBradyrhizobium japonicum phoBgene is required for phosphate-limited growth but not for symbiotic nitrogen fixation. FEMS Microbiology Letters, 1998, 161, 47-52.	1.8	10
150	Identification of the Bradyrhizobium japonicum degP gene as part of an operon containing small heat-shock protein genes. Archives of Microbiology, 1998, 169, 89-97.	2.2	12
151	A novel DNA element that controls bacterial heat shock gene expression. Molecular Microbiology, 1998, 28, 315-323.	2.5	65
152	Promoter Selectivity of the Bradyrhizobium japonicum RpoH Transcription Factors In Vivo and In Vitro. Journal of Bacteriology, 1998, 180, 2395-2401.	2.2	22
153	The dnaKJ operon belongs to the σ32-dependent class of heat shock genes in Bradyrhizobium japonicum. Molecular Genetics and Genomics, 1997, 254, 195-206.	2.4	39
154	Three disparately regulated genes for σ 32 â€like transcription factors in Bradyrhizobium japonicum. Molecular Microbiology, 1997, 24, 93-104.	2.5	62
155	Expression of heat shock genes inClostridium acetobutylicum. FEMS Microbiology Reviews, 1995, 17, 341-348.	8.6	55
156	The C-terminal domain of NifL is sufficient to inhibit NifA activity. Journal of Bacteriology, 1995, 177, 5078-5087.	2.2	35
157	Synthesis of heat shock proteins inThermoanaerobacterium thermosulfurigenes EM1 (Clostridium) Tj ETQq1 1 0	.784314 r 2.2	gBŢ /Overlack
158	The isolated catalytic domain of NIFA, a bacterial enhancer-binding protein, activates transcription in vitro: activation is inhibited by NIFL Proceedings of the National Academy of Sciences of the United States of America, 1994, 91, 103-107.	7.1	94
159	Cloning, nucleotide sequence and structural analysis of the Clostridium acetobutylicum dnaJ gene. FEMS Microbiology Letters, 1993, 114, 53-60.	1.8	18
160	In vitro activity of NifL, a signal transduction protein for biological nitrogen fixation. Journal of Bacteriology, 1993, 175, 7683-7688.	2.2	50
161	Cloning, sequencing, and molecular analysis of the groESL operon of Clostridium acetobutylicum. Journal of Bacteriology, 1992, 174, 3282-3289.	2.2	116
162	Molecular characterization of the dnaK gene region of Clostridium acetobutylicum, including grpE, dnaJ, and a new heat shock gene. Journal of Bacteriology, 1992, 174, 3290-3299.	2.2	133

#	Article	IF	CITATIONS
163	Induction of heat shock proteins during initiation of solvent formation inClostridium acetobutylicum. Applied Microbiology and Biotechnology, 1990, 33, 697-704.	3.6	56

164 RNA Thermometers in Bacterial Pathogens. , 0, , 55-73.

10