
David B Smith

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6487863/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Wireless Body Area Networks: A Survey. IEEE Communications Surveys and Tutorials, 2014, 16, 1658-1686.	39.4	1,178
2	Peer-to-Peer Trading in Electricity Networks: An Overview. IEEE Transactions on Smart Grid, 2020, 11, 3185-3200.	9.0	464
3	Economics of Electric Vehicle Charging: A Game Theoretic Approach. IEEE Transactions on Smart Grid, 2012, 3, 1767-1778.	9.0	369
4	Energy Storage Sharing in Smart Grid: A Modified Auction-Based Approach. IEEE Transactions on Smart Grid, 2016, 7, 1462-1475.	9.0	268
5	The Impact of Adverse Weather Conditions on Autonomous Vehicles: How Rain, Snow, Fog, and Hail Affect the Performance of a Self-Driving Car. IEEE Vehicular Technology Magazine, 2019, 14, 103-111.	3.4	196
6	Propagation Models for Body-Area Networks: A Survey and New Outlook. IEEE Antennas and Propagation Magazine, 2013, 55, 97-117.	1.4	182
7	Prioritizing Consumers in Smart Grid: A Game Theoretic Approach. IEEE Transactions on Smart Grid, 2014, 5, 1429-1438.	9.0	179
8	Enabling interference-aware and energy-efficient coexistence of multiple wireless body area networks with unknown dynamics. IEEE Access, 2016, 4, 2935-2951.	4.2	153
9	Challenges in body area networks for healthcare: the MAC. , 2012, 50, 100-106.		136
10	A Survey of Algorithms for Distributed Charging Control of Electric Vehicles in Smart Grid. IEEE Transactions on Intelligent Transportation Systems, 2020, 21, 4497-4515.	8.0	123
11	Price Discrimination for Energy Trading in Smart Grid: A Game Theoretic Approach. IEEE Transactions on Smart Grid, 2017, 8, 1790-1801.	9.0	104
12	An Incentive-Compatible Energy Trading Framework for Neighborhood Area Networks With Shared Energy Storage. IEEE Transactions on Sustainable Energy, 2020, 11, 467-476.	8.8	85
13	Game-Theoretic Electric Vehicle Charging Management Resilient to Non-Ideal User Behavior. IEEE Transactions on Intelligent Transportation Systems, 2018, 19, 3486-3495.	8.0	62
14	From Load to Net Energy Forecasting: Short-Term Residential Forecasting for the Blend of Load and PV Behind the Meter. IEEE Access, 2020, 8, 224343-224353.	4.2	53
15	Competitive Energy Trading Framework for Demand-Side Management in Neighborhood Area Networks. IEEE Transactions on Smart Grid, 2018, 9, 4313-4322.	9.0	52
16	Flexible Resource Allocation in Device-to-Device Communications Using Stackelberg Game Theory. IEEE Transactions on Communications, 2019, 67, 653-667.	7.8	48
17	Statistical characterization of the dynamic narrowband body area channel. , 2008, , .		47
18	Open-source testbed for Body Area Networks: 200 sample/sec, 12 hrs continuous measurement. , 2010, ,		41

DAVID B SMITH

#	Article	IF	CITATIONS
19	Simple Prediction-Based Power Control for the On-Body Area Communications Channel. , 2011, , .		38
20	Channel Modeling for Wireless Body Area Networks. Integrated Circuits and Systems, 2015, , 25-55.	0.2	36
21	Transmit power control for wireless body area networks using novel channel prediction. , 2012, , .		35
22	Challenges and prospects for negawatt trading in light of recent technological developments. Nature Energy, 2020, 5, 834-841.	39.5	35
23	Coordinated charging and discharging control of electric vehicles to manage supply voltages in distribution networks: Assessing the customer benefit. Applied Energy, 2021, 291, 116857.	10.1	34
24	Joint relay selection and transmit power control for wireless body area networks coexistence. , 2014, , ,		30
25	Robust Frequency, Phase, and Amplitude Estimation in Power Systems Considering Harmonics. IEEE Transactions on Power Delivery, 2020, 35, 1158-1168.	4.3	24
26	Multi-Stage Antenna Selection for Adaptive Beamforming in MIMO Radar. IEEE Transactions on Signal Processing, 2020, 68, 1374-1389.	5.3	20
27	Opportunistic relaying in wireless body area networks: Coexistence performance. , 2013, , .		18
28	Experimental Analysis of Cross-Layer Optimization for Distributed Wireless Body-to-Body Networks. IEEE Sensors Journal, 2019, 19, 12494-12509.	4.7	18
29	Coordinated Charge and Discharge Scheduling of Electric Vehicles for Load Curve Shaping. IEEE Transactions on Intelligent Transportation Systems, 2022, 23, 7653-7665.	8.0	15
30	Deep Learning Channel Prediction for Transmit Power Control in Wireless Body Area Networks. , 2019, , .		14
31	Power Control for Body Area Networks: Accurate Channel Prediction by Lightweight Deep Learning. IEEE Internet of Things Journal, 2021, 8, 3567-3575.	8.7	11
32	Analysis of Effective Capacity and Throughput of Polling-Based Device-To-Device Networks. IEEE Transactions on Vehicular Technology, 2018, 67, 8656-8666.	6.3	9
33	Cross-layer optimized routing with low duty cycle TDMA across multiple wireless body area networks. , 2017, , .		8
34	A Nash Stable Cross-Layer Coalitional Game for Resource Utilization in Device-to-Device Communications. IEEE Transactions on Vehicular Technology, 2018, 67, 8608-8622.	6.3	8
35	A Decentralized Electric Vehicle Charge Scheduling Scheme for Tracking Power Profiles. , 2020, , .		7
36	MmWave M2M Networks: Improving Delay Performance of Relaying. IEEE Transactions on Wireless Communications, 2021, 20, 577-589.	9.2	7

DAVID B SMITH

#	Article	IF	CITATIONS
37	The Cost of Privacy in Asynchronous Differentially-Private Machine Learning. IEEE Transactions on Information Forensics and Security, 2021, 16, 2118-2129.	6.9	7
38	Channel Deviation-Based Power Control in Body Area Networks. IEEE Journal of Biomedical and Health Informatics, 2018, 22, 785-798.	6.3	6
39	Privacy-Preserved Optimal Energy Trading, Statistics, and Forecasting for a Neighborhood Area Network. Computer, 2020, 53, 25-34.	1.1	6
40	Scalable MAC protocol for D2D communication for future 5G networks. , 2017, , .		5
41	Socially Optimal Distributed User Association for Multi-Hop Machine-to-Machine Communications. , 2018, , .		5
42	PCF-Based LTE Wi-Fi Aggregation for Coordinating and Offloading the Cellular Traffic to D2D Network. IEEE Transactions on Vehicular Technology, 2018, 67, 12193-12203.	6.3	5
43	Client Scheduling in Wireless Federated Learning Based on Channel and Learning Qualities. IEEE Wireless Communications Letters, 2022, 11, 732-735.	5.0	5
44	Switch-based hybrid beamforming for massive MIMO communications in mmWave bands. Signal Processing, 2022, 200, 108659.	3.7	5
45	Game-theoretic demand-side management robust to non-ideal consumer behavior in smart grid. , 2016, ,		4
46	Evolutionary Coalitional Game for Correlation-Aware Clustering in Machine-to-Machine Communications. , 2017, , .		4
47	Cross-Layer Designs for Body-to-Body Networks: Adaptive CSMA/CA with Distributed Routing. , 2018, , .		4
48	Evolutionary Games for Correlation-Aware Clustering in Massive Machine-to-Machine Networks. IEEE Transactions on Communications, 2019, 67, 6527-6543.	7.8	4
49	How Multi-Hop Relaying in mmWave Communications Improves Uplink Network Latency. , 2019, , .		1
50	Fast Differential Unitary Space-Time Modulation Decoding for a MIMO Radio Channel. Wireless Personal Communications, 2003, 25, 343-349.	2.7	0