
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6487826/publications.pdf Version: 2024-02-01

FENCZHU SUN

#	Article	IF	CITATIONS
1	Normalizing Metagenomic Hi-C Data and Detecting Spurious Contacts Using Zero-Inflated Negative Binomial Regression. Journal of Computational Biology, 2022, 29, 106-120.	1.6	9
2	Increasing prediction performance of colorectal cancer disease status using random forests classification based on metagenomic shotgun sequencing data. Synthetic and Systems Biotechnology, 2022, 7, 574-585.	3.7	14
3	HiCBin: binning metagenomic contigs and recovering metagenome-assembled genomes using Hi-C contact maps. Genome Biology, 2022, 23, 63.	8.8	20
4	A model-based approach to assess reproducibility for large-scale high-throughput MRI-based studies. NeuroImage, 2022, 255, 119166.	4.2	3
5	Critical Assessment of Metagenome Interpretation: the second round of challenges. Nature Methods, 2022, 19, 429-440.	19.0	133
6	Phage–bacterial contig association prediction with a convolutional neural network. Bioinformatics, 2022, 38, i45-i52.	4.1	3
7	16S rRNA and metagenomic shotgun sequencing data revealed consistent patterns of gut microbiome signature in pediatric ulcerative colitis. Scientific Reports, 2022, 12, 6421.	3.3	22
8	MLR-OOD: A Markov Chain Based Likelihood Ratio Method for Out-Of-Distribution Detection of Genomic Sequences. Journal of Molecular Biology, 2022, 434, 167586.	4.2	2
9	A New Context Tree Inference Algorithm for Variable Length Markov Chain Model with Applications to Biological Sequence Analyses. Journal of Computational Biology, 2022, , .	1.6	Ο
10	HiFine: integrating Hi-c-based and shotgun-based methods to reFine binning of metagenomic contigs. Bioinformatics, 2022, , .	4.1	2
11	The Machine-Learning-Mediated Interface of Microbiome and Genetic Risk Stratification in Neuroblastoma Reveals Molecular Pathways Related to Patient Survival. Cancers, 2022, 14, 2874.	3.7	4
12	Sparse logistic regression revealed the associations between HBV PreS quasispecies and hepatocellular carcinoma. Virology Journal, 2022, 19, .	3.4	1
13	AC-PCoA: Adjustment for confounding factors using principal coordinate analysis. PLoS Computational Biology, 2022, 18, e1010184.	3.2	7
14	CRAFT: Compact genome Representation toward large-scale Alignment-Free daTabase. Bioinformatics, 2021, 37, 155-161.	4.1	3
15	KIMI: Knockoff Inference for Motif Identification from molecular sequences with controlled false discovery rate. Bioinformatics, 2021, 37, 759-766.	4.1	1
16	ARG-SHINE: improve antibiotic resistance class prediction by integrating sequence homology, functional information and deep convolutional neural network. NAR Genomics and Bioinformatics, 2021, 3, Iqab066.	3.2	6
17	Decreased secondary faecal bile acids in children with ulcerative colitis and <i>Clostridioides difficile</i> infection. Alimentary Pharmacology and Therapeutics, 2021, 54, 792-804.	3.7	6
18	Reduced fecal shortâ€chain fatty acids in hispanic children with ulcerative colitis. Physiological Reports, 2021, 9, e14918.	1.7	1

#	Article	IF	CITATIONS
19	Abstract 24: Multi-feature ensemble learning on cell-free dna for accurately detecting and locating cancer. Cancer Research, 2021, 81, 24-24.	0.9	3
20	A global overview of genetically interpretable multimorbidities among common diseases in the UK Biobank. Genome Medicine, 2021, 13, 110.	8.2	31
21	Improving brain age estimates with deep learning leads to identification of novel genetic factors associated with brain aging. Neurobiology of Aging, 2021, 105, 199-204.	3.1	16
22	DeepLINK: Deep learning inference using knockoffs with applications to genomics. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	7.1	8
23	Statistical Methods for Pairwise Comparison of Metagenomic Samples. Frontiers in Probability and the Statistical Sciences, 2021, , 81-99.	0.1	0
24	Assessment of metagenomic assemblers based on hybrid reads of real and simulated metagenomic sequences. Briefings in Bioinformatics, 2020, 21, 777-790.	6.5	18
25	Rapid diagnosis and comprehensive bacteria profiling of sepsis based on cell-free DNA. Journal of Translational Medicine, 2020, 18, 5.	4.4	6
26	International Workshop on Applications of Probability and Statistics to Biology, July 11â€â€13, 2019 ––In Honor of Professor Minping Qian's 80th Birthday. Quantitative Biology, 2020, 8, 177-186.	0.5	0
27	KmerGO: A Tool to Identify Group-Specific Sequences With k-mers. Frontiers in Microbiology, 2020, 11, 2067.	3.5	7
28	A network-based integrated framework for predicting virus–prokaryote interactions. NAR Genomics and Bioinformatics, 2020, 2, lqaa044.	3.2	69
29	Confidence intervals for Markov chain transition probabilities based on next generation sequencing reads data. Quantitative Biology, 2020, 8, 143-154.	0.5	1
30	Identifying viruses from metagenomic data using deep learning. Quantitative Biology, 2020, 8, 64-77.	0.5	302
31	Association of relative brain age with tobacco smoking, alcohol consumption, and genetic variants. Scientific Reports, 2020, 10, 10.	3.3	121
32	Parity is associated with cognitive function and brain age in both females and males. Scientific Reports, 2020, 10, 6100.	3.3	41
33	MicroPro: using metagenomic unmapped reads to provide insights into human microbiota and disease associations. Genome Biology, 2019, 20, 154.	8.8	29
34	Benchmarking of alignment-free sequence comparison methods. Genome Biology, 2019, 20, 144.	8.8	147
35	NetGO: improving large-scale protein function prediction with massive network information. Nucleic Acids Research, 2019, 47, W379-W387.	14.5	86
36	A new statistic for efficient detection of repetitive sequences. Bioinformatics, 2019, 35, 4596-4606.	4.1	4

#	Article	IF	CITATIONS
37	Statistical significance approximation for local similarity analysis of dependent time series data. BMC Bioinformatics, 2019, 20, 53.	2.6	6
38	SolidBin: improving metagenome binning with semi-supervised normalized cut. Bioinformatics, 2019, 35, 4229-4238.	4.1	52
39	Reads Binning Improves Alignment-Free Metagenome Comparison. Frontiers in Genetics, 2019, 10, 1156.	2.3	17
40	Afann: bias adjustment for alignment-free sequence comparison based on sequencing data using neural network regression. Genome Biology, 2019, 20, 266.	8.8	22
41	GOLabeler: improving sequence-based large-scale protein function prediction by learning to rank. Bioinformatics, 2018, 34, 2465-2473.	4.1	136
42	Alignment-Free Sequence Analysis and Applications. Annual Review of Biomedical Data Science, 2018, 1, 93-114.	6.5	78
43	Classifying Alzheimer's disease with brain imaging and genetic data using a neural network framework. Neurobiology of Aging, 2018, 68, 151-158.	3.1	48
44	Alignment-free genome comparison enables accurate geographic sourcing of white oak DNA. BMC Genomics, 2018, 19, 896.	2.8	6
45	Comparative studies of alignment, alignment-free and SVM based approaches for predicting the hosts of viruses based on viral sequences. Scientific Reports, 2018, 8, 10032.	3.3	25
46	Background Adjusted Alignment-Free Dissimilarity Measures Improve the Detection of Horizontal Gene Transfer. Frontiers in Microbiology, 2018, 9, 711.	3.5	10
47	Identifying Group-Specific Sequences for Microbial Communities Using Long k-mer Sequence Signatures. Frontiers in Microbiology, 2018, 9, 872.	3.5	17
48	Gut microbial and metabolomic profiles after fecal microbiota transplantation in pediatric ulcerative colitis patients. FEMS Microbiology Ecology, 2018, 94, .	2.7	73
49	Deep sequencing of HBV pre-S region reveals high heterogeneity of HBV genotypes and associations of word pattern frequencies with HCC. PLoS Genetics, 2018, 14, e1007206.	3.5	7
50	COCACOLA: binning metagenomic contigs using sequence COmposition, read CoverAge, CO-alignment and paired-end read LinkAge. Bioinformatics, 2017, 33, 791-798.	4.1	130
51	CAFE: aCcelerated Alignment-FrEe sequence analysis. Nucleic Acids Research, 2017, 45, W554-W559.	14.5	59
52	CancerLocator: non-invasive cancer diagnosis and tissue-of-origin prediction using methylation profiles of cell-free DNA. Genome Biology, 2017, 18, 53.	8.8	204
53	Spatiotemporal profile of postsynaptic interactomes integrates components of complex brain disorders. Nature Neuroscience, 2017, 20, 1150-1161.	14.8	104
54	Prediction of virus-host infectious association by supervised learning methods. BMC Bioinformatics, 2017, 18, 60.	2.6	38

#	Article	IF	CITATIONS
55	Towards enhanced and interpretable clustering/classification in integrative genomics. Nucleic Acids Research, 2017, 45, e169-e169.	14.5	1
56	Alignment-free \$d_2^*\$ oligonucleotide frequency dissimilarity measure improves prediction of hosts from metagenomically-derived viral sequences. Nucleic Acids Research, 2017, 45, 39-53.	14.5	245
57	Sparse generalized linear model with L 0 approximation for feature selection and prediction with big omics data. BioData Mining, 2017, 10, 39.	4.0	11
58	Optimal choice of word length when comparing two Markov sequences using a χ 2-statistic. BMC Genomics, 2017, 18, 732.	2.8	8
59	VirFinder: a novel k-mer based tool for identifying viral sequences from assembled metagenomic data. Microbiome, 2017, 5, 69.	11.1	433
60	Improving contig binning of metagenomic data using \$\$ {d}_2^S \$\$ oligonucleotide frequency dissimilarity. BMC Bioinformatics, 2017, 18, 425.	2.6	18
61	Next-generation sequencing revealed divergence in deletions of the preS region in the HBV genome between different HBV-related liver diseases. Journal of General Virology, 2017, 98, 2748-2758.	2.9	14
62	Alignment-free Transcriptomic and Metatranscriptomic Comparison Using Sequencing Signatures with Variable Length Markov Chains. Scientific Reports, 2016, 6, 37243.	3.3	29
63	Inference of domain-disease associations from domain-protein, protein-disease and disease-disease relationships. BMC Systems Biology, 2016, 10, 4.	3.0	16
64	Correlation detection strategies in microbial data sets vary widely in sensitivity and precision. ISME Journal, 2016, 10, 1669-1681.	9.8	593
65	Inference of Markovian properties of molecular sequences from NGS data and applications to comparative genomics. Bioinformatics, 2016, 32, 993-1000.	4.1	25
66	Network tuned multiple rank aggregation and applications to gene ranking. BMC Bioinformatics, 2015, 16, S6.	2.6	1
67	Statistical significance approximation in local trend analysis of high-throughput time-series data using the theory of Markov chains. BMC Bioinformatics, 2015, 16, 301.	2.6	13
68	Cross-depth analysis of marine bacterial networks suggests downward propagation of temporal changes. ISME Journal, 2015, 9, 2573-2586.	9.8	105
69	Multilevel regularized regression for simultaneous taxa selection and network construction with metagenomic count data. Bioinformatics, 2015, 31, 1067-1074.	4.1	13
70	Finding Genetic Overlaps Among Diseases Based on Ranked Gene Lists. Journal of Computational Biology, 2015, 22, 111-123.	1.6	5
71	Comparison of Metatranscriptomic Samples Based on k-Tuple Frequencies. PLoS ONE, 2014, 9, e84348.	2.5	22
72	DiseaseConnect: a comprehensive web server for mechanism-based disease–disease connections. Nucleic Acids Research, 2014, 42, W137-W146.	14.5	106

#	Article	IF	CITATIONS
73	Alignment-free protein interaction network comparison. Bioinformatics, 2014, 30, i430-i437.	4.1	48
74	New developments of alignment-free sequence comparison: measures, statistics and next-generation sequencing. Briefings in Bioinformatics, 2014, 15, 343-353.	6.5	126
75	Integrative approaches for predicting protein function and prioritizing genes for complex phenotypes using protein interaction networks. Briefings in Bioinformatics, 2014, 15, 685-698.	6.5	21
76	Accurate Genome Relative Abundance Estimation Based on Shotgun Metagenomic Reads. , 2014, , 1-5.		0
77	Extended Local Similarity Analysis (eLSA) of Biological Data. , 2014, , 1-5.		0
78	A unified approach for allele frequency estimation, SNP detection and association studies based on pooled sequencing data using EM algorithms. BMC Genomics, 2013, 14, S1.	2.8	32
79	Alignment-Free Sequence Comparison Based on Next-Generation Sequencing Reads. Journal of Computational Biology, 2013, 20, 64-79.	1.6	76
80	Meeting report on RECOMB 2013 (the 17th Annual International Conference on Research in) Tj ETQqO 0 0 rgBT	/Oyerlock	10 ₁ Tf 50 462
81	Preface: Research in Computational Molecular Biology (RECOMB 2013). Journal of Computational Biology, 2013, 20, 713-713.	1.6	0
82	Multiple alignment-free sequence comparison. Bioinformatics, 2013, 29, 2690-2698.	4.1	11

83	Efficient statistical significance approximation for local similarity analysis of high-throughput time series data. Bioinformatics, 2013, 29, 230-237.	4.1	137
84	Marine Bacterial, Archaeal, and Protistan Association Networks. , 2013, , 1-10.		2
85	Normal and Compound Poisson Approximations for Pattern Occurrences in NGS Reads. Journal of Computational Biology, 2012, 19, 839-854.	1.6	6
86	Preface: Special Issue. Journal of Computational Biology, 2012, 19, 575-576.	1.6	0
87	Association of Genetic Variation in the Mitochondrial Genome With Blood Pressure and Metabolic Traits. Hypertension, 2012, 60, 949-956.	2.7	38
88	Comparison of metagenomic samples using sequence signatures. BMC Genomics, 2012, 13, 730.	2.8	74
89	Modeling RNA degradation for RNA-Seq with applications. Biostatistics, 2012, 13, 734-747.	1.5	25
	Computational methods for the analysis of tag acquiences in metagenemics studies. Frontiers in		

90 Computational methods for the analysis of tag sequences in metagenomics studies. Frontiers in Bioscience - Scholar, 2012, S4, 1333-1343.

2.1 2

#	Article	IF	CITATIONS
91	CEDER: Accurate Detection of Differentially Expressed Genes by Combining Significance of Exons Using RNA-Seq. IEEE/ACM Transactions on Computational Biology and Bioinformatics, 2012, 9, 1281-1292.	3.0	17
92	Alignment-Free Sequence Comparison Based on Next Generation Sequencing Reads: Extended Abstract. Lecture Notes in Computer Science, 2012, , 272-285.	1.3	2
93	Accurate Genome Relative Abundance Estimation Based on Shotgun Metagenomic Reads. PLoS ONE, 2011, 6, e27992.	2.5	105
94	Marine bacterial, archaeal and protistan association networks reveal ecological linkages. ISME Journal, 2011, 5, 1414-1425.	9.8	560
95	DomainRBF: a Bayesian regression approach to the prioritization of candidate domains for complex diseases. BMC Systems Biology, 2011, 5, 55.	3.0	21
96	Extended local similarity analysis (eLSA) of microbial community and other time series data with replicates. BMC Systems Biology, 2011, 5, S15.	3.0	223
97	Variance adjusted weighted UniFrac: a powerful beta diversity measure for comparing communities based on phylogeny. BMC Bioinformatics, 2011, 12, 118.	2.6	126
98	Integrating multiple protein-protein interaction networks to prioritize disease genes: a Bayesian regression approach. BMC Bioinformatics, 2011, 12, S11.	2.6	36
99	New powerful statistics for alignment-free sequence comparison under a pattern transfer model. Journal of Theoretical Biology, 2011, 284, 106-116.	1.7	43
100	Detection of Parent-of-Origin Effects for Quantitative Traits in Complete and Incomplete Nuclear Families With Multiple Children. American Journal of Epidemiology, 2011, 174, 226-233.	3.4	12
101	Sequence Alignment as Hypothesis Testing. Journal of Computational Biology, 2011, 18, 677-691.	1.6	8
102	Inferring Signaling and Gene Regulatory Network from Genetic and Genomic Information. , 2011, , 479-500.		0
103	The Power of Detecting Enriched Patterns: An HMM Approach. Journal of Computational Biology, 2010, 17, 581-592.	1.6	12
104	Alignment-Free Sequence Comparison (II): Theoretical Power of Comparison Statistics. Journal of Computational Biology, 2010, 17, 1467-1490.	1.6	105
105	Computational Methods for Predicting Domain–Domain Interactions. Computational Biology, 2010, , 157-173.	0.2	0
106	Predicting kinase functional sites using hierarchical stochastic language modelling. Statistics and Its Interface, 2010, 3, 523-531.	0.3	0
107	Usefulness and limitations of dK random graph models to predict interactions and functional homogeneity in biological networks under a pseudo-likelihood parameter estimation approach. BMC Bioinformatics, 2009, 10, 277.	2.6	1
108	A network-based integrative approach to prioritize reliable hits from multiple genome-wide RNAi screens in Drosophila. BMC Genomics, 2009, 10, 220.	2.8	37

#	Article	IF	CITATIONS
109	Somatic, germline and sex hierarchy regulated gene expression during Drosophila metamorphosis. BMC Genomics, 2009, 10, 80.	2.8	49
110	Ecdysone Receptor Acts in fruitless- Expressing Neurons to Mediate Drosophila Courtship Behaviors. Current Biology, 2009, 19, 1447-1452.	3.9	57
111	Alignment-Free Sequence Comparison (I): Statistics and Power. Journal of Computational Biology, 2009, 16, 1615-1634.	1.6	187
112	Data integration for the study of protein interactions. Chapman & Hall/CRC Mathematical and Computational Biology Series, 2009, , 259-274.	0.1	0
113	Chromatin Regulation and Gene Centrality Are Essential for Controlling Fitness Pleiotropy in Yeast. PLoS ONE, 2009, 4, e8086.	2.5	2
114	Bayesian Models and Gibbs Sampling Strategies for Local Graph Alignment and Motif Identification in Stochastic Biological Networks. Communications in Information and Systems, 2009, 9, 347-370.	0.5	4
115	Testing gene set enrichment for subset of genes: Sub-GSE. BMC Bioinformatics, 2008, 9, 362.	2.6	18
116	Conservation and implications of eukaryote transcriptional regulatory regions across multiple species. BMC Genomics, 2008, 9, 623.	2.8	7
117	The effects of protein interactions, gene essentiality and regulatory regions on expression variation. BMC Systems Biology, 2008, 2, 54.	3.0	15
118	Prioritizing functional modules mediating genetic perturbations and their phenotypic effects: a global strategy. Genome Biology, 2008, 9, R174.	9.6	4
119	A critical assessment of Mus musculus gene function prediction using integrated genomic evidence. Genome Biology, 2008, 9, S2.	9.6	214
120	Compound Poisson Approximation of the Number of Occurrences of a Position Frequency Matrix (PFM) on Both Strands. Journal of Computational Biology, 2008, 15, 547-564.	1.6	14
121	CGI: a new approach for prioritizing genes by combining gene expression and protein–protein interaction data. Bioinformatics, 2007, 23, 215-221.	4.1	106
122	Maternal influence on blood pressure suggests involvement of mitochondrial DNA in the pathogenesis of hypertension: the Framingham Heart Study. Journal of Hypertension, 2007, 25, 2067-2073.	0.5	47
123	Sequence-Based Prioritization of Nonsynonymous Single-Nucleotide Polymorphisms for the Study of Disease Mutations. American Journal of Human Genetics, 2007, 81, 346-360.	6.2	42
124	The transmission disequilibrium test and imprinting effects test based on caseâ€parent pairs. Genetic Epidemiology, 2007, 31, 273-287.	1.3	13
125	Inferring activity changes of transcription factors by binding association with sorted expression profiles. BMC Bioinformatics, 2007, 8, 452.	2.6	72

126 An Efficient Algorithm for Deciphering Regulatory Motifs. , 2007, , 249-269.

0

#	Article	IF	CITATIONS
127	Diffusion Kernel-Based Logistic Regression Models for Protein Function Prediction. OMICS A Journal of Integrative Biology, 2006, 10, 40-55.	2.0	90
128	An integrated approach to the prediction of domain-domain interactions. BMC Bioinformatics, 2006, 7, 269.	2.6	102
129	A model-based approach to selection of tag SNPs. BMC Bioinformatics, 2006, 7, 303.	2.6	23
130	Searching for interpretable rules for disease mutations: a simulated annealing bump hunting strategy. BMC Bioinformatics, 2006, 7, 417.	2.6	25
131	Further understanding human disease genes by comparing with housekeeping genes and other genes. BMC Genomics, 2006, 7, 31.	2.8	126
132	An integrative approach for causal gene identification and gene regulatory pathway inference. Bioinformatics, 2006, 22, e489-e496.	4.1	87
133	A dynamic programming algorithm for binning microbial community profiles. Bioinformatics, 2006, 22, 1508-1514.	4.1	18
134	Local similarity analysis reveals unique associations among marine bacterioplankton species and environmental factors. Bioinformatics, 2006, 22, 2532-2538.	4.1	292
135	Network motif identification in stochastic networks. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103, 9404-9409.	7.1	45
136	MARD: a new method to detect differential gene expression in treatment-control time courses. Bioinformatics, 2006, 22, 2650-2657.	4.1	9
137	Assessing the power of tag SNPs in the mapping of quantitative trait loci (QTL) with extremal and random samples. , 2005, 6, 51.		10
138	HAPLORE: a program for haplotype reconstruction in general pedigrees without recombination. Bioinformatics, 2005, 21, 90-103.	4.1	96
139	HapBlock: haplotype block partitioning and tag SNP selection software using a set of dynamic programming algorithms. Bioinformatics, 2005, 21, 131-134.	4.1	109
140	An Integrated Probabilistic Model for Functional Prediction of Proteins. Journal of Computational Biology, 2004, 11, 463-475.	1.6	134
141	Extreme Value Distribution Based Gene Selection Criteria for Discriminant Microarray Data Analysis Using Logistic Regression. Journal of Computational Biology, 2004, 11, 215-226.	1.6	23
142	Mapping gene ontology to proteins based on protein-protein interaction data. Bioinformatics, 2004, 20, 895-902.	4.1	149
143	Sampling distribution for microsatellites amplified by PCR: mean field approximation and its applications to genotyping. Journal of Theoretical Biology, 2004, 228, 185-194.	1.7	4
144	Haplotype Block Partitioning and Tag SNP Selection Using Genotype Data and Their Applications to Association Studies. Genome Research, 2004, 14, 908-916.	5.5	143

#	Article	IF	CITATIONS
145	Defining haplotype blocks and tag single-nucleotide polymorphisms in the human genome. Human Molecular Genetics, 2004, 13, 335-342.	2.9	39
146	Mitochondrial genome mutations in hypertensive individuals*1. American Journal of Hypertension, 2004, 17, 629-635.	2.0	56
147	Dynamic Programming Algorithms for Haplotype Block Partitioning and Tag SNP Selection Using Haplotype Data or GenotypeÂData. Lecture Notes in Computer Science, 2004, , 96-112.	1.3	0
148	Microsatellite mutations during the polymerase chain reaction: mean field approximations and their applications. Journal of Theoretical Biology, 2003, 224, 127-137.	1.7	8
149	Detecting susceptibility genes in case-control studies using set association. BMC Genetics, 2003, 4, S9.	2.7	13
150	The Mutation Process of Microsatellites During the Polymerase Chain Reaction. Journal of Computational Biology, 2003, 10, 143-155.	1.6	16
151	A Novel Class of Tests for the Detection of Mitochondrial DNA–Mutation Involvement in Diseases. American Journal of Human Genetics, 2003, 72, 1515-1526.	6.2	36
152	Haplotype Block Partition with Limited Resources and Applications to Human Chromosome 21 Haplotype Data. American Journal of Human Genetics, 2003, 73, 63-73.	6.2	47
153	The Relationship Between Microsatellite Slippage Mutation Rate and the Number of Repeat Units. Molecular Biology and Evolution, 2003, 20, 2123-2131.	8.9	195
154	Taq DNA polymerase slippage mutation rates measured by PCR and quasi-likelihood analysis: (CA/GT)n and (A/T)n microsatellites. Nucleic Acids Research, 2003, 31, 974-980.	14.5	221
155	Prediction of Protein Function Using Protein–Protein Interaction Data. Journal of Computational Biology, 2003, 10, 947-960.	1.6	274
156	Assessment of the reliability of protein-protein interactions and protein function prediction. Pacific Symposium on Biocomputing, 2003, , 140-51.	0.7	39
157	A dynamic programming algorithm for haplotype block partitioning. Proceedings of the National Academy of Sciences of the United States of America, 2002, 99, 7335-7339.	7.1	312
158	Inferring Domain-Domain Interactions From Protein-Protein Interactions. Genome Research, 2002, 12, 1540-1548.	5.5	376
159	Haplotype Block Structure and Its Applications to Association Studies: Power and Study Designs. American Journal of Human Genetics, 2002, 71, 1386-1394.	6.2	243
160	Prediction of protein function using protein-protein interaction data. Proceedings, 2002, 1, 197-206.	0.1	11
161	The Power of Transmission Disequilibrium Tests for Quantitative Traits. Genetic Epidemiology, 2001, 21, S632-7.	1.3	11
162	Test of Association for Quantitative Traits in General Pedigrees: The Quantitative Pedigree Disequilibrium Test. Genetic Epidemiology, 2001, 21, S370-5.	1.3	23

#	Article	IF	CITATIONS
163	New Estimator of the Genotype Risk Ratio for Use in Case-Parental Control Studies. American Journal of Epidemiology, 2001, 154, 259-263.	3.4	0
164	On the use of population-based registries in the clinical validation of genetic tests for disease susceptibility. Genetics in Medicine, 2000, 2, 186-192.	2.4	16
165	Estimation of the Mutation Rate During Error-prone Polymerase Chain Reaction. Journal of Computational Biology, 2000, 7, 143-158.	1.6	29
166	Transmission/Disequilibrium Tests Using Multiple Tightly Linked Markers. American Journal of Human Genetics, 2000, 67, 936-946.	6.2	159
167	Sample sizes for the transmission disequilibrium tests: tdt, s-tdt and 1-tdt. Communications in Statistics - Theory and Methods, 2000, 29, 1129-1142.	1.0	10
168	Transmission Disequilibrium Test (TDT) when Only One Parent Is Available The 1-TDT. American Journal of Epidemiology, 1999, 150, 97-104.	3.4	104
169	Modeling DNA Shuffling. Journal of Computational Biology, 1999, 6, 77-90.	1.6	23
170	Case-Only Design to Measure Gene-Gene Interaction. Epidemiology, 1999, 10, 167-170.	2.7	127
171	Whole genome association studies for genes affecting alcohol dependence. Genetic Epidemiology, 1999, 17, S337-42.	1.3	11
172	Using case-control designs for genome-wide screening for associations between genetic markers and disease susceptibility loci. Genetic Epidemiology, 1999, 17, S779-S784.	1.3	0
173	Testing for contributions of mitochondrial DNA mutations to complex diseases. , 1998, 15, 451-469.		4
174	Pooling Strategies for Establishing Physical Genome Maps Using FISH. Journal of Computational Biology, 1997, 4, 467-486.	1.6	0
175	Whole Genome Amplification and Branching Processes. Advances in Applied Probability, 1997, 29, 629-668.	0.7	3
176	Whole Genome Amplification and Branching Processes. Advances in Applied Probability, 1997, 29, 629-668.	0.7	1
177	Sequential sib-pair and association studies to detect genes in quantitative traits. Genetic Epidemiology, 1997, 14, 885-890.	1.3	1
178	The method of sib-pair linkage analysis in context of case-control design. Genetic Epidemiology, 1997, 14, 939-944.	1.3	3
179	A Mathematical Analysis ofin VitroMolecular Selection – Amplification. Journal of Molecular Biology, 1996, 258, 650-660.	4.2	29
180	Whole genome amplification of single cells: mathematical analysis of PEP and tagged PCR. Nucleic Acids Research, 1995, 23, 3034-3040.	14.5	29

#	Article	IF	CITATIONS
181	Genomic mapping by end-characterized random clones: a mathematical analysis. Genomics, 1995, 26, 84-100.	2.9	25
182	The Polymerase Chain Reaction and Branching Processes. Journal of Computational Biology, 1995, 2, 63-86.	1.6	68
183	Prediction of protein function using protein-protein interaction data. , 0, , .		31
184	Metagenomic Analyses of Multiple Gut Datasets Revealed the Association of Phage Signatures in Colorectal Cancer. Frontiers in Cellular and Infection Microbiology, 0, 12, .	3.9	16
185	Michael Waterman's Contributions to Computational Biology and Bioinformatics. Journal of Computational Biology, 0, , .	1.6	0