Espen W Remme

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6487594/publications.pdf

Version: 2024-02-01

687363 434195 1,614 37 13 31 citations h-index g-index papers 37 37 37 2414 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Geometry as a Confounder When Assessing Ventricular Systolic Function. Journal of the American College of Cardiology, 2017, 70, 942-954.	2.8	345
2	The â€~Digital Twin' to enable the vision of precision cardiology. European Heart Journal, 2020, 41, 4556-4564.	2.2	319
3	Estimating Left Ventricular Filling Pressure byÂEchocardiography. Journal of the American College of Cardiology, 2017, 69, 1937-1948.	2.8	298
4	Non-invasive myocardial work index identifies acute coronary occlusion in patients with non-ST-segment elevation-acute coronary syndrome. European Heart Journal Cardiovascular Imaging, 2015, 16, 1247-1255.	1,2	152
5	Determinants of left atrial reservoir and pump strain and use of atrial strain for evaluation of left ventricular filling pressure. European Heart Journal Cardiovascular Imaging, 2021, 23, 61-70.	1.2	129
6	Beneficial Effect on Cardiac Resynchronization From Left Ventricular Endocardial Pacing Is Mediated by Early Access to High Conduction Velocity Tissue. Circulation: Arrhythmia and Electrophysiology, 2015, 8, 1164-1172.	4.8	47
7	Mechanism of Abnormal Septal Motion in Left Bundle Branch Block. JACC: Cardiovascular Imaging, 2019, 12, 2402-2413.	5.3	44
8	Afterload Hypersensitivity in Patients WithÂLeft Bundle Branch Block. JACC: Cardiovascular Imaging, 2019, 12, 967-977.	5. 3	34
9	Mechanics of left ventricular relaxation, early diastolic lengthening, and suction investigated in a mathematical model. American Journal of Physiology - Heart and Circulatory Physiology, 2011, 300, H1678-H1687.	3.2	28
10	Early systolic lengthening may identify minimal myocardial damage in patients with non-ST-elevation acute coronary syndrome. European Heart Journal Cardiovascular Imaging, 2014, 15, 1152-1160.	1.2	28
11	Automatic real-time detection of myocardial ischemia by epicardial accelerometer. Journal of Thoracic and Cardiovascular Surgery, 2010, 139, 1026-1032.	0.8	22
12	The validation of cardiac accelerometer sensor measurements. Physiological Measurement, 2009, 30, 1429-1444.	2.1	20
13	Elevated inflammatory markers in preeclamptic pregnancies, but no relation to systemic arterial stiffness. Pregnancy Hypertension, 2015, 5, 325-329.	1.4	17
14	Factors determining the magnitude of the pre-ejection leftward septal motion in left bundle branch block. Europace, 2015, 18, euv381.	1.7	15
15	Mechanical Effects on Right Ventricular Function From Left Bundle Branch Block and Cardiac Resynchronization Therapy. JACC: Cardiovascular Imaging, 2020, 13, 1475-1484.	5. 3	14
16	A computational pipeline for quantification of mouse myocardial stiffness parameters. Computers in Biology and Medicine, 2014, 53, 65-75.	7.0	13
17	Assessment of 3D motion increases the applicability of accelerometers for monitoring left ventricular functionâ€. Interactive Cardiovascular and Thoracic Surgery, 2015, 20, 329-337.	1.1	10
18	Continuous monitoring of cardiac function by 3-dimensional accelerometers in a closed-chest pig model. Interactive Cardiovascular and Thoracic Surgery, 2015, 21, 573-582.	1.1	9

#	Article	IF	CITATIONS
19	Dysfunction of the systemic right ventricle after atrial switch: physiological implications of altered septal geometry and load. Journal of Applied Physiology, 2018, 125, 1482-1489.	2.5	9
20	Left ventricular end-systolic volume is a more sensitive marker of acute response to cardiac resynchronization therapy than contractility indices: insights from an experimental study. Europace, 2019, 21, 347-355.	1.7	9
21	Gravity Compensation Method for Combined Accelerometer and Gyro Sensors Used in Cardiac Motion Measurements. Annals of Biomedical Engineering, 2017, 45, 1292-1304.	2.5	8
22	Lateral Wall Dysfunction Signals Onset of Progressive HeartÂFailure in Left Bundle Branch Block. JACC: Cardiovascular Imaging, 2021, 14, 2059-2069.	5.3	7
23	Shortening of timeâ€toâ€peak left ventricular pressure rise (Td) in cardiac resynchronization therapy. ESC Heart Failure, 2021, 8, 5222-5236.	3.1	7
24	Cardiac responses to left ventricular pacing in hearts with normal electrical conduction: beneficial effect of improved filling is counteracted by dyssynchrony. American Journal of Physiology - Heart and Circulatory Physiology, 2014, 307, H370-H378.	3.2	6
25	Simulation model of cardiac three dimensional accelerometer measurements. Medical Engineering and Physics, 2012, 34, 990-998.	1.7	5
26	Continuous Estimation of Acute Changes in Preload Using Epicardially Attached Accelerometers. IEEE Transactions on Biomedical Engineering, 2021, 68, 2067-2075.	4.2	5
27	Validation of a Holographic Display for Quantification of Mitral Annular Dynamics by Three-Dimensional Echocardiography. Journal of the American Society of Echocardiography, 2019, 32, 303-316.e4.	2.8	3
28	Transmural myocardial strain distribution measured at high spatial and temporal resolution. , 2011, , .		2
29	Estimating Regional Myocardial Contraction Using Miniature Transducers on the Epicardium. Ultrasound in Medicine and Biology, 2019, 45, 2958-2969.	1.5	2
30	Comparison of two methods for mechanical activation detection using high frame rate ultrasound imaging. , 2019, , .		2
31	Left bundle branch block increases left ventricular diastolic pressure during tachycardia due to incomplete relaxation. Journal of Applied Physiology, 2020, 128, 729-738.	2.5	2
32	OUP accepted manuscript. European Heart Journal Cardiovascular Imaging, 2021, , .	1.2	1
33	A high-throughput study of visceral organs in CT-scanned pigs. Scientific Reports, 2022, 12, .	3.3	1
34	Automatic Detection of Aortic Valve Events Using Deep Neural Networks on Cardiac Signals From Epicardially Placed Accelerometer. IEEE Journal of Biomedical and Health Informatics, 2022, 26, 4450-4461.	6.3	1
35	Velocity resolution improvement for high temporal resolution ultrasonic transducer., 2017,,.		0
36	Velocity resolution improvement for high temporal resolution ultrasonic transducer., 2017,,.		0

#	Article	IF	CITATIONS
37	Myocardial Strain Measured by Epicardial Transducersâ€"Comparison Between Velocity Estimators. Ultrasound in Medicine and Biology, 2021, 47, 1377-1396.	1.5	0