
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6486700/publications.pdf

Version: 2024-02-01

KAELONG LIN

#	Article	IF	CITATIONS
1	Effects SiO2/Na2O molar ratio on mechanical properties and the microstructure of nano-SiO2 metakaolin-based geopolymers. Construction and Building Materials, 2014, 53, 503-510.	7.2	198
2	Development of lightweight aggregate from sewage sludge and waste glass powder for concrete. Construction and Building Materials, 2013, 47, 334-339.	7.2	101
3	Effect of nano-SiO2 on the alkali-activated characteristics of metakaolin-based geopolymers. Construction and Building Materials, 2013, 48, 441-447.	7.2	96
4	Hydration characteristics of waste sludge ash utilized as raw cement material. Cement and Concrete Research, 2005, 35, 1999-2007.	11.0	94
5	Manufacture and performance of lightweight aggregate from municipal solid waste incinerator fly ash and reservoir sediment for self-consolidating lightweight concrete. Cement and Concrete Composites, 2012, 34, 1159-1166.	10.7	88
6	Effect of composition on characteristics of thin film transistor liquid crystal display (TFT-LCD) waste glass-metakaolin-based geopolymers. Construction and Building Materials, 2012, 36, 501-507.	7.2	70
7	The reuse of municipal solid waste incinerator fly ash slag as a cement substitute. Resources, Conservation and Recycling, 2003, 39, 315-324.	10.8	67
8	Hydration characteristics of municipal solid waste incinerator bottom ash slag as a pozzolanic material for use in cement. Cement and Concrete Composites, 2006, 28, 817-823.	10.7	66
9	The utilization of thin film transistor liquid crystal display waste glass as a pozzolanic material. Journal of Hazardous Materials, 2009, 163, 916-921.	12.4	66
10	Recycling thin film transistor liquid crystal display (TFT-LCD) waste glass produced as glass–ceramics. Journal of Cleaner Production, 2009, 17, 1499-1503.	9.3	64
11	Waste brick's potential for use as a pozzolan in blended Portland cement. Waste Management and Research, 2010, 28, 647-652.	3.9	62
12	Recycling waste brick from construction and demolition of buildings as pozzolanic materials. Waste Management and Research, 2010, 28, 653-659.	3.9	58
13	Use of thin film transistor liquid crystal display (TFT-LCD) waste glass in the production of ceramic tiles. Journal of Hazardous Materials, 2007, 148, 91-97.	12.4	56
14	The effect of heating temperature of thin film transistor-liquid crystal display (TFT-LCD) optical waste glass as a partial substitute partial for clay in eco-brick. Journal of Cleaner Production, 2007, 15, 1755-1759.	9.3	55
15	Effect of nano-SiO2 on the alkali-activated characteristics of spent catalyst metakaolin-based geopolymers. Construction and Building Materials, 2017, 143, 455-463.	7.2	55
16	Hydraulic activity of municipal solid waste incinerator fly-ash-slag-blended eco-cement. Cement and Concrete Research, 2001, 31, 97-103.	11.0	53
17	Effect of solid-to-liquid ratios on the properties of waste catalyst–metakaolin based geopolymers. Construction and Building Materials, 2015, 88, 74-83.	7.2	50
18	The influence of municipal solid waste incinerator fly ash slag blended in cement pastes. Cement and Concrete Research, 2005, 35, 979-986.	11.0	48

#	Article	IF	CITATIONS
19	Effect of heating temperature on the sintering characteristics of sewage sludge ash. Journal of Hazardous Materials, 2006, 128, 175-181.	12.4	48
20	Effects of foam agent on characteristics of thinâ€film transistor liquid crystal display waste glassâ€metakaolinâ€based cellular geopolymer. Environmental Progress and Sustainable Energy, 2014, 33, 538-550.	2.3	43
21	The effects of SiO2/Na2O molar ratio on the characteristics of alkali-activated waste catalyst–metakaolin based geopolymers. Construction and Building Materials, 2015, 95, 710-720.	7.2	43
22	Influence of phosphate of the waste sludge on the hydration characteristics of eco-cement. Journal of Hazardous Materials, 2009, 168, 1105-1110.	12.4	42
23	Geopolymer technology for the solidification of simulated ion exchange resins with radionuclides. Journal of Environmental Management, 2019, 235, 19-27.	7.8	40
24	Understanding biotoxicity for reusability of municipal solid waste incinerator (MSWI) ash. Journal of Hazardous Materials, 2006, 138, 9-15.	12.4	38
25	Melting of municipal solid waste incinerator fly ash by waste-derived thermite reaction. Journal of Hazardous Materials, 2009, 162, 338-343.	12.4	37
26	Enhancement in early strengths of slag-cement mortars by adjusting basicity of the slag prepared from fly-ash of MSWI. Cement and Concrete Research, 2009, 39, 651-658.	11.0	37
27	Effects of sintering temperature on the characteristics of solar panel waste glass in the production of ceramic tiles. Journal of Material Cycles and Waste Management, 2015, 17, 194-200.	3.0	33
28	Sustainable Development and Performance Evaluation of Marble-Waste-Based Geopolymer Concrete. Polymers, 2020, 12, 1924.	4.5	30
29	Predicting the co-melting temperatures of municipal solid waste incinerator fly ash and sewage sludge ash using grey model and neural network. Waste Management and Research, 2011, 29, 284-293.	3.9	29
30	Biotoxicity assessment on reusability of municipal solid waste incinerator (MSWI) ash. Journal of Hazardous Materials, 2006, 136, 741-746.	12.4	28
31	Elucidating the hydration properties of paste containing thin film transistor liquid crystal display waste glass. Journal of Hazardous Materials, 2008, 159, 471-475.	12.4	27
32	Overview on industrial recycling technologies and management strategies of end-of-life fluorescent lamps in Taiwan and other developed countries. Journal of Material Cycles and Waste Management, 2015, 17, 312-323.	3.0	27
33	Recycling of spent catalyst and waste sludge from industry to substitute raw materials in the preparation of Portland cement clinker. Sustainable Environment Research, 2017, 27, 251-257.	4.2	26
34	Recycling CMP sludge as a resource in concrete. Construction and Building Materials, 2012, 30, 243-251.	7.2	24
35	The hydration characteristics and utilization of slag obtained by the vitrification of MSWI fly ash. Waste Management, 2004, 24, 199-205.	7.4	23
36	Feasibility of recycling waste diatomite and fly ash cosintered as porous ceramics. Environmental Progress and Sustainable Energy, 2013, 32, 25-34.	2.3	20

#	Article	IF	CITATIONS
37	Elucidating the effects of solar panel waste glass substitution on the physical and mechanical characteristics of clay bricks. Environmental Technology (United Kingdom), 2013, 34, 15-24.	2.2	20
38	Utilization of solar panel waste glass for metakaoliniteâ€based geopolymer synthesis. Environmental Progress and Sustainable Energy, 2013, 32, 797-803.	2.3	19
39	Thinâ€filmâ€transistor liquidâ€crystal display waste glass and nanoâ€SiO ₂ as substitute sources for metakaolinâ€based geopolymer. Environmental Progress and Sustainable Energy, 2014, 33, 947-955.	2.3	19
40	Latent Hydraulic Reactivity of Blended Cement Incorporating Slag Made from Municipal Solid Waste Incinerator Fly Ash. Journal of the Air and Waste Management Association, 2003, 53, 1340-1346.	1.9	18
41	Water absorption and retention of porous ceramics cosintered from waste diatomite and catalyst. Environmental Progress and Sustainable Energy, 2013, 32, 640-648.	2.3	18
42	Hydration Properties of Eco-Cement Pastes from Waste Sludge Ash Clinkers. Journal of the Air and Waste Management Association, 2004, 54, 1534-1542.	1.9	17
43	Behaviour of heavy metals immobilized by co-melting treatment of sewage sludge ash and municipal solid waste incinerator fly ash. Waste Management and Research, 2009, 27, 660-667.	3.9	16
44	Effect of alkali activation thin film transistor-liquid crystal display waste glass on the mechanical behavior of geopolymers. Construction and Building Materials, 2018, 162, 724-731.	7.2	16
45	Circulation Fluidized Bed Combustion Fly Ash as Partial Replacement of Fine Aggregates in Roller Compacted Concrete. Materials, 2019, 12, 4204.	2.9	16
46	Geopolymer Technologies for Stabilization of Basic Oxygen Furnace Slags and Sustainable Application as Construction Materials. Sustainability, 2020, 12, 5002.	3.2	16
47	An emerging pollutant contributing to the cytotoxicity of MSWI ash wastes: Strontium. Journal of Hazardous Materials, 2010, 173, 597-604.	12.4	15
48	Pozzolanic reaction of a mortar made with cement and slag vitrified from a MSWI ash-mix and LED sludge. Construction and Building Materials, 2014, 64, 277-287.	7.2	15
49	Effect of residual rice husk ash on mechanicalâ€microstructural properties and thermal conductivity of sodiumâ€hydroxideâ€activated bricks. Environmental Progress and Sustainable Energy, 2018, 37, 1647-1656.	2.3	15
50	Dose–mortality assessment on municipal solid waste incinerator (MSWI) ash. Journal of Hazardous Materials, 2007, 139, 19-24.	12.4	14
51	Recycling solar panel waste glass sintered as glassâ€ceramics. Environmental Progress and Sustainable Energy, 2012, 31, 612-618.	2.3	14
52	Performance and microstructure characteristics of the fly ash and residual rice husk ashâ€based geopolymers prepared at various solidâ€ŧoâ€ŀiquid ratios and curing temperatures. Environmental Progress and Sustainable Energy, 2017, 36, 83-92.	2.3	13
53	Effects of <scp>SiO</scp> ₂ / <scp>Na</scp> ₂ <scp>O</scp> molar ratio on properties of <scp>TFT</scp> â€ <scp>LCD</scp> waste glassâ€metakaolinâ€based geopolymers. Environmental Progress and Sustainable Energy, 2014, 33, 205-212.	2.3	11
54	Hydraulic activity of cement mixed with slag from vitrified solid waste incinerator fly ash. Waste Management and Research, 2003, 21, 567-574.	3.9	10

#	Article	IF	CITATIONS
55	Synthesis and characterization of a mesoporous Al-MCM-41 Molecular Sieve Material and its Moisture Regulation Performance in Water Molecule Adsorption/Desorption. Microporous and Mesoporous Materials, 2021, 310, 110643.	4.4	10
56	Synthesis of wasteâ€derived glassâ€ceramics from MSWI fly ash and EAF dust: Kinetics of nucleation and crystallization. Environmental Progress and Sustainable Energy, 2013, 32, 480-488.	2.3	9
57	Hydration characteristics of waste catalysts used as pozzolanic materials. Environmental Progress and Sustainable Energy, 2014, 33, 353-358.	2.3	9
58	Groundwater Molybdenum from Emerging Industries in Taiwan. Bulletin of Environmental Contamination and Toxicology, 2016, 96, 102-106.	2.7	9
59	Water Retention Characteristics of Porous Ceramics Produced from Waste Diatomite and Coal Fly Ash. Journal of Clean Energy Technologies, 0, , 211-215.	0.1	9
60	Characteristics of Porous Ceramics Produced from Waste Diatomite and Water Purification Sludge. Environmental Engineering Science, 2012, 29, 436-446.	1.6	8
61	Production of Lightweight Aggregate from Sewage Sludge and Reservoir Sediment for High-Flowing Concrete. Journal of Construction Engineering and Management - ASCE, 2014, 140, .	3.8	8
62	Utilization of reduction slag and waste sludge for Portland cement clinker production. Environmental Progress and Sustainable Energy, 2018, 37, 669-677.	2.3	8
63	Utilization of Silicon Carbide Sludge as Metakaolin-Based Geopolymer Materials. Sustainability, 2020, 12, 7333.	3.2	8
64	Effects of Municipal Solid Waste Incinerator Fly Ash Slag on the Strength and Porosity of Slag-Blended Cement Pastes. Environmental Engineering Science, 2009, 26, 1081-1086.	1.6	7
65	Characteristics of waste catalyst reused as latent hydraulic materials. Environmental Progress and Sustainable Energy, 2013, 32, 94-98.	2.3	7
66	The influence of sapphire substrate silicon carbide sludge on structural properties of metakaolinâ€based geopolymers. Environmental Progress and Sustainable Energy, 2020, 39, 13305.	2.3	7
67	Influence of SiC Sludge on the Microstructure of Geopolymers. Materials, 2020, 13, 2203.	2.9	7
68	Properties and microstructure of ecoâ€cement produced from coâ€sintered washed fly ash and waste sludge. Environmental Progress and Sustainable Energy, 2016, 35, 764-771.	2.3	6
69	Hydration characteristics of recycling reduction slag and waste sludge by coâ€sintered treatment produced as ecoâ€cement. Environmental Progress and Sustainable Energy, 2017, 36, 1466-1473.	2.3	6
70	Composite Properties of Non-Cement Blended Fiber Composites without Alkali Activator. Materials, 2020, 13, 1443.	2.9	6
71	Synthesis and environmental applications of aluminum-containing MCM-41 type material from industrial waste containing silicon and aluminum. Journal of Non-Crystalline Solids, 2021, 569, 120954.	3.1	6
72	Study on the effects Nanoâ€SiO ₂ and spent catalyst ratios on characteristics of metakaolinâ€based geopolymers. Environmental Progress and Sustainable Energy, 2019, 38, 220-227.	2.3	5

#	Article	IF	CITATIONS
73	Effects of the Basicity on the Comelting Conditions of Municipal Solid Waste Incinerator Fly Ash and Sewage Sludge Ash. Journal of the Air and Waste Management Association, 2006, 56, 1743-1749.	1.9	4
74	Pozzolanic Reactivity of the Synthetic Slag from Municipal Solid Waste Incinerator Cyclone Ash and Scrubber Ash. Journal of the Air and Waste Management Association, 2006, 56, 569-574.	1.9	4
75	Effect of Using Shell Molding Sand and Sodium Silicate Sand as Substitute Sources for Cement Raw Materials. Environmental Engineering Science, 2011, 28, 653-660.	1.6	4
76	Hydration characteristics of cement for coâ€sintered from washedâ€fly ash and waste sludge. Environmental Progress and Sustainable Energy, 2015, 34, 964-972.	2.3	4
77	Study on isopropanol degradation by UV/TiO2 nanotube. AIP Conference Proceedings, 2018, , .	0.4	4
78	Characteristics of porous ceramics prepared from sandblasting waste and waste diatomite by coâ€sintering process. Environmental Progress and Sustainable Energy, 2019, 38, 321-328.	2.3	4
79	A novel approach for preparing ecological zeolite material from solar panel waste lass and sandblasting waste: microscopic characteristics and humidity control performance. Journal of Materials Research and Technology, 2022, 19, 4128-4140.	5.8	4
80	Dose–mortality assessment upon reuse and recycling of industrial sludge. Journal of Hazardous Materials, 2007, 148, 326-333.	12.4	3
81	Biogas production from most agricultural organic wastes by anaerobic digestion in Taiwan. Environmental Progress and Sustainable Energy, 2019, 38, e13242.	2.3	3
82	Production and Application of Synthetic Lightweight Aggregates Using Municipal Solid Waste Incinerator Fly Ash, Reservoir Sediment and Waste Glass Powder. Advanced Science Letters, 2013, 19, 147-152.	0.2	3
83	Recycling of Silicon Carbide Sludge on the Preparation and Characterization of Lightweight Foamed Geopolymer Materials. Polymers, 2021, 13, 4029.	4.5	3
84	Synthesis and Grafted NH2-Al/MCM-41 with Amine Functional Groups as Humidity Control Material from Silicon Carbide Sludge and Granite Sludge. Processes, 2021, 9, 2107.	2.8	2
85	Molecular sieve material from liquid–crystal-display waste glass and silicon carbide sludge via hydrothermal process with alkali fusion pretreatment. Journal of Material Cycles and Waste Management, 2021, 23, 1081-1089.	3.0	1
86	Utilization of waste from the silicon carbide grinding sludge and stone sludge as source of silicon aluminum for the synthesis of the amine functional mesoporous humidity control material. Journal of Material Cycles and Waste Management, 2022, 24, 1009-1019.	3.0	1
87	Humidityâ€conditioning mesoporous molecular sieves synthesized from thinâ€filmâ€transistor liquidâ€crystalâ€display waste glass and SiC sludge. Environmental Progress and Sustainable Energy, 2018, 37, 1285-1290.	2.3	0
88	Characterization of humidity-controlling porous ceramics produced from coal fly ash and waste catalyst by co-sintering. AIP Conference Proceedings, 2018, , .	0.4	0
89	Synthesis of humidity onditioning mesoporous molecular sieves by using liquid rystal display waste glass. Environmental Progress and Sustainable Energy, 2020, 39, e13431.	2.3	0
90	Characteristics of silicon carbide sludge-based geopolymers. Polymer Bulletin, 0, , 1.	3.3	0

#	Article	IF	CITATIONS
91	Elucidating the effects of silicon carbide sludge and waste glass fiber on the characteristics of porous ecoâ€fireproof materials. Environmental Progress and Sustainable Energy, 2021, 40, e13682.	2.3	Ο
92	RECYCLING OF LIGHT-EMITTING DIODE WASTE QUARTZ SAND ACTING AS A POZZOLANIC MATERIAL FOR PORTLAND CEMENT. Environmental Engineering and Management Journal, 2020, 19, 819-828.	0.6	0