
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6486535/publications.pdf Version: 2024-02-01

FRIC COUNTY

#	Article	IF	CITATIONS
1	Structure of Staphylococcal α-Hemolysin, a Heptameric Transmembrane Pore. Science, 1996, 274, 1859-1865.	12.6	2,237
2	Crystal structure of a bacterial homologue of Na+/Cldependent neurotransmitter transporters. Nature, 2005, 437, 215-223.	27.8	1,564
3	Structure of acid-sensing ion channel 1 at 1.9 à resolution and low pH. Nature, 2007, 449, 316-323.	27.8	979
4	X-ray structure, symmetry and mechanism of an AMPA-subtype glutamate receptor. Nature, 2009, 462, 745-756.	27.8	966
5	Principles of activation and permeation in an anion-selective Cys-loop receptor. Nature, 2011, 474, 54-60.	27.8	899
6	Mechanisms for Activation and Antagonism of an AMPA-Sensitive Clutamate Receptor. Neuron, 2000, 28, 165-181.	8.1	874
7	Principles of Selective Ion Transport in Channels and Pumps. Science, 2005, 310, 1461-1465.	12.6	853
8	Structure of a glutamate transporter homologue from Pyrococcus horikoshii. Nature, 2004, 431, 811-818.	27.8	758
9	Subunit arrangement and function in NMDA receptors. Nature, 2005, 438, 185-192.	27.8	694
10	Crystal structure of the ATP-gated P2X4 ion channel in the closed state. Nature, 2009, 460, 592-598.	27.8	680
11	Mechanism of glutamate receptor desensitization. Nature, 2002, 417, 245-253.	27.8	650
12	Structure of a glutamate-receptor ligand-binding core in complex with kainate. Nature, 1998, 395, 913-917.	27.8	646
13	Fluorescence-Detection Size-Exclusion Chromatography for Precrystallization Screening of Integral Membrane Proteins. Structure, 2006, 14, 673-681.	3.3	628
14	X-ray structure of dopamine transporter elucidates antidepressant mechanism. Nature, 2013, 503, 85-90.	27.8	549
15	Structural basis for modulation and agonist specificity of HCN pacemaker channels. Nature, 2003, 425, 200-205.	27.8	540
16	Screening and large-scale expression of membrane proteins in mammalian cells for structural studies. Nature Protocols, 2014, 9, 2574-2585.	12.0	532
17	X-ray structures and mechanism of the human serotonin transporter. Nature, 2016, 532, 334-339.	27.8	527
18	X-ray structures of LeuT in substrate-free outward-open and apo inward-open states. Nature, 2012, 481, 469-474.	27.8	488

#	Article	IF	CITATIONS
19	Coupling substrate and ion binding to extracellular gate of a sodium-dependent aspartate transporter. Nature, 2007, 445, 387-393.	27.8	473
20	Molecular mechanism of ATP binding and ion channel activation in P2X receptors. Nature, 2012, 485, 207-212.	27.8	460
21	NMDA receptor structures reveal subunit arrangement and pore architecture. Nature, 2014, 511, 191-197.	27.8	441
22	Mechanisms of activation, inhibition and specificity: crystal structures of the NMDA receptor NR1 ligand-binding core. EMBO Journal, 2003, 22, 2873-2885.	7.8	430
23	Pore architecture and ion sites in acid-sensing ion channels and P2X receptors. Nature, 2009, 460, 599-604.	27.8	422
24	A Competitive Inhibitor Traps LeuT in an Open-to-Out Conformation. Science, 2008, 322, 1655-1661.	12.6	418
25	Antidepressant binding site in a bacterial homologue of neurotransmitter transporters. Nature, 2007, 448, 952-956.	27.8	391
26	Glycine receptor mechanism elucidated by electron cryo-microscopy. Nature, 2015, 526, 224-229.	27.8	370
27	Structural basis for partial agonist action at ionotropic glutamate receptors. Nature Neuroscience, 2003, 6, 803-810.	14.8	364
28	Dynamic Superresolution Imaging of Endogenous Proteins on Living Cells at Ultra-High Density. Biophysical Journal, 2010, 99, 1303-1310.	0.5	364
29	Neurotransmitter and psychostimulant recognition by the dopamine transporter. Nature, 2015, 521, 322-327.	27.8	357
30	Unlocking the molecular secrets of sodium-coupled transporters. Nature, 2009, 459, 347-355.	27.8	308
31	Functional characterization of a potassium-selective prokaryotic glutamate receptor. Nature, 1999, 402, 817-821.	27.8	304
32	Structure and Mechanism of a Na ⁺ -Independent Amino Acid Transporter. Science, 2009, 325, 1010-1014.	12.6	299
33	Designed protein pores as components for biosensors. Chemistry and Biology, 1997, 4, 497-505.	6.0	280
34	X-Ray Structure of Acid-Sensing Ion Channel 1–Snake Toxin Complex Reveals Open State of a Na+-Selective Channel. Cell, 2014, 156, 717-729.	28.9	264
35	Subunit stoichiometry of staphylococcal alpha-hemolysin in crystals and on membranes: a heptameric transmembrane pore Proceedings of the National Academy of Sciences of the United States of America, 1994, 91, 12828-12831.	7.1	245
36	Structural plasticity and dynamic selectivity of acid-sensing ion channel–spider toxin complexes. Nature, 2012, 489, 400-405.	27.8	245

#	Article	IF	CITATIONS
37	X-ray structures of GluCl in apo states reveal a gating mechanism of Cys-loop receptors. Nature, 2014, 512, 333-337.	27.8	236
38	α-Hemolysin fromStaphylococcus aureus:An Archetype of β-Barrel, Channel-Forming Toxins. Journal of Structural Biology, 1998, 121, 110-122.	2.8	233
39	A Fluorescence-Detection Size-Exclusion Chromatography-Based Thermostability Assay for Membrane Protein Precrystallization Screening. Structure, 2012, 20, 1293-1299.	3.3	222
40	Crystal structure of staphylococcal LukF delineates conformational changes accompanying formation of a transmembrane channel. Nature Structural Biology, 1999, 6, 134-140.	9.7	220
41	Mechanism of Positive Allosteric Modulators Acting on AMPA Receptors. Journal of Neuroscience, 2005, 25, 9027-9036.	3.6	220
42	Measurement of Conformational Changes accompanying Desensitization in an Ionotropic Glutamate Receptor. Cell, 2006, 127, 85-97.	28.9	206
43	X-ray structures define human P2X3 receptor gating cycle and antagonist action. Nature, 2016, 538, 66-71.	27.8	191
44	Serotonin transporter–ibogaine complexes illuminate mechanisms of inhibition and transport. Nature, 2019, 569, 141-145.	27.8	187
45	Structure and Dynamics of AMPA Receptor GluA2 in Resting, Pre-Open, and Desensitized States. Cell, 2014, 158, 778-792.	28.9	186
46	Gating mechanisms of acid-sensing ion channels. Nature, 2018, 555, 397-401.	27.8	177
47	Mechanism of NMDA receptor channel block by MK-801 and memantine. Nature, 2018, 556, 515-519.	27.8	177
48	Mechanism of NMDA Receptor Inhibition and Activation. Cell, 2016, 165, 704-714.	28.9	175
49	Mechanism of Partial Agonist Action at the NR1 Subunit of NMDA Receptors. Neuron, 2005, 47, 71-84.	8.1	174
50	Channel-forming toxins: tales of transformation. Current Opinion in Structural Biology, 1997, 7, 566-573.	5.7	158
51	Structural Basis for AMPA Receptor Activation and Ligand Selectivity: Crystal Structures of Five Agonist Complexes with the GluR2 Ligand-binding Core. Journal of Molecular Biology, 2002, 322, 93-109.	4.2	155
52	Overexpression of a glutamate receptor (GluR2) ligand binding domain in Escherichia coli: Application of a novel protein folding screen. Proceedings of the National Academy of Sciences of the United States of America, 1997, 94, 13431-13436.	7.1	148
53	X-ray structures of Drosophila dopamine transporter in complex with nisoxetine and reboxetine. Nature Structural and Molecular Biology, 2015, 22, 506-508.	8.2	147
54	Crystal structure and association behaviour of the GluR2 amino-terminal domain. EMBO Journal, 2009, 28, 1812-1823.	7.8	146

#	Article	IF	CITATIONS
55	Mechanisms for ligand binding to GluR0 ion channels: crystal structures of the glutamate and serine complexes and a closed apo state. Journal of Molecular Biology, 2001, 311, 815-836.	4.2	141
56	Tuning activation of the AMPA-sensitive GluR2 ion channel by genetic adjustment of agonist-induced conformational changes. Proceedings of the National Academy of Sciences of the United States of America, 2003, 100, 5736-5741.	7.1	139
57	Cryo-EM structures of the triheteromeric NMDA receptor and its allosteric modulation. Science, 2017, 355, .	12.6	134
58	Architecture and subunit arrangement of native AMPA receptors elucidated by cryo-EM. Science, 2019, 364, 355-362.	12.6	134
59	Cryo-EM structure of the benzodiazepine-sensitive α1β1γ2S tri-heteromeric GABAA receptor in complex with GABA. ELife, 2018, 7, .	6.0	126
60	Structural basis for action by diverse antidepressants on biogenic amine transporters. Nature, 2013, 503, 141-145.	27.8	125
61	Structure and function of AMPA receptors. Journal of Physiology, 2004, 554, 249-253.	2.9	124
62	Crystal Structure of the Vibrio cholerae Cytolysin (VCC) Pro-toxin and its Assembly into a Heptameric Transmembrane Pore. Journal of Molecular Biology, 2005, 350, 997-1016.	4.2	122
63	Neurotransmitter/sodium symporter orthologue LeuT has a single high-affinity substrate site. Nature, 2010, 468, 1129-1132.	27.8	117
64	αâ€Hemolysin, γâ€hemolysin, and leukocidin from <i>Staphylococcus aureus</i> : Distant in sequence but similar in structure. Protein Science, 1997, 6, 2631-2635.	7.6	116
65	Structural basis for recognition of diverse antidepressants by the human serotonin transporter. Nature Structural and Molecular Biology, 2018, 25, 170-175.	8.2	114
66	AMPA Receptor Binding Cleft Mutations That Alter Affinity, Efficacy, and Recovery from Desensitization. Journal of Neuroscience, 2005, 25, 3752-3762.	3.6	112
67	A new protein folding screen: Application to the ligand binding domains of a glutamate and kainate receptor and to lysozyme and carbonic anhydrase. Protein Science, 1999, 8, 1475-1483.	7.6	111
68	Activation and Desensitization Mechanism of AMPA Receptor-TARP Complex by Cryo-EM. Cell, 2017, 170, 1234-1246.e14.	28.9	111
69	X-ray structures of AMPA receptor–cone snail toxin complexes illuminate activation mechanism. Science, 2014, 345, 1021-1026.	12.6	110
70	Mechanism of Activation and Selectivity in a Ligand-Gated Ion Channel:Â Structural and Functional Studies of GluR2 and Quisqualateâ€,‡. Biochemistry, 2002, 41, 15635-15643.	2.5	109
71	Molecular bases of cyclodextrin adapter interactions with engineered protein nanopores. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 8165-8170.	7.1	108
72	Structures of LeuT in bicelles define conformation and substrate binding in a membrane-like context. Nature Structural and Molecular Biology, 2012, 19, 212-219.	8.2	103

#	Article	IF	CITATIONS
73	Competitive Antagonism of AMPA Receptors by Ligands of Different Classes:  Crystal Structure of ATPO Bound to the GluR2 Ligand-Binding Core, in Comparison with DNQX. Journal of Medicinal Chemistry, 2003, 46, 214-221.	6.4	101
74	Architecture of fully occupied GluA2 AMPA receptor–TARP complex elucidated by cryo-EM. Nature, 2016, 536, 108-111.	27.8	100
75	How LeuT shapes our understanding of the mechanisms of sodiumâ€coupled neurotransmitter transporters. Journal of Physiology, 2014, 592, 863-869.	2.9	96
76	Î ² -Barrel membrane protein folding and structure viewed through the lens of α-hemolysin. Biochimica Et Biophysica Acta - Biomembranes, 2003, 1609, 19-27.	2.6	95
77	Trimeric Subunit Stoichiometry of the Clutamate Transporters fromBacillus caldotenaxandBacillus stearothermophilusâ€. Biochemistry, 2003, 42, 12981-12988.	2.5	93
78	Probing the ligand binding domain of the GluR2 receptor by proteolysis and deletion mutagenesis defines domain boundaries and yields a crystallizable construct. Protein Science, 1998, 7, 2623-2630.	7.6	86
79	Mechanisms for Zinc and Proton Inhibition of the GluN1/GluN2A NMDA Receptor. Cell, 2018, 175, 1520-1532.e15.	28.9	85
80	Probing the Function, Conformational Plasticity, and Dimerâ^'Dimer Contacts of the GluR2 Ligand-Binding Core: Studies of 5-Substituted Willardiines and GluR2 S1S2 in the Crystalâ€,‡. Biochemistry, 2003, 42, 5201-5213.	2.5	82
81	Three-dimensional structure of carbamoyl phosphate and succinate bound to aspartate carbamoyltransferase Proceedings of the National Academy of Sciences of the United States of America, 1988, 85, 4205-4208.	7.1	79
82	Mechanism of gating and partial agonist action in the glycine receptor. Cell, 2021, 184, 957-968.e21.	28.9	77
83	High resolution crystallographic studies of α-hemolysin-phospholipid complexes define heptamer-lipid head group interactions: Implication for understanding protein-lipid interactions. Protein Science, 2004, 13, 1503-1511.	7.6	74
84	Structure of mouse protocadherin 15 of the stereocilia tip link in complex with LHFPL5. ELife, 2018, 7, .	6.0	73
85	The catalytic mechanism of Escherichia coli aspartate carbamoyltransferase: A molecular modelling study. Biochemical and Biophysical Research Communications, 1987, 142, 893-897.	2.1	68
86	Structure and symmetry inform gating principles of ionotropic glutamate receptors. Neuropharmacology, 2017, 112, 11-15.	4.1	65
87	Crystal structure of CTP-ligated T state aspartate transcarbamoylase at 2.5 Ã resolution: Implications for ATCase mutants and the mechanism of negative cooperativity. Proteins: Structure, Function and Bioinformatics, 1993, 15, 147-176.	2.6	64
88	The His-Gly motif of acid-sensing ion channels resides in a reentrant â€~loop' implicated in gating and ion selectivity. ELife, 2020, 9, .	6.0	64
89	Probing the Folding and Unfolding of Wild-Type and Mutant Forms of Bacteriorhodopsin in Micellar Solutions: Evaluation of Reversible Unfolding Conditionsâ€. Biochemistry, 1999, 38, 15380-15387.	2.5	63
90	Arresting and releasing Staphylococcal α-hemolysin at intermediate stages of pore formation by engineered disulfide bonds. Protein Science, 2003, 12, 997-1006.	7.6	62

#	Article	IF	CITATIONS
91	Molecular mechanism of prestin electromotive signal amplification. Cell, 2021, 184, 4669-4679.e13.	28.9	61
92	Autoimmune receptor encephalitis in mice induced by active immunization with conformationally stabilized holoreceptors. Science Translational Medicine, 2019, 11, .	12.4	60
93	Three-Dimensional Structure of the Ligand-Binding Core of GluR2 in Complex with the Agonist (S)-ATPA:Â Implications for Receptor Subunit Selectivity. Journal of Medicinal Chemistry, 2003, 46, 872-875.	6.4	59
94	Illumination of serotonin transporter mechanism and role of the allosteric site. Science Advances, 2021, 7, eabl3857.	10.3	58
95	The New York Consortium on Membrane Protein Structure (NYCOMPS): a high-throughput platform for structural genomics of integral membrane proteins. Journal of Structural and Functional Genomics, 2010, 11, 191-199.	1.2	57
96	Chemical and structural investigation of the paroxetine-human serotonin transporter complex. ELife, 2020, 9, .	6.0	53
97	Hippocampal AMPA receptor assemblies and mechanism of allosteric inhibition. Nature, 2021, 594, 448-453.	27.8	52
98	The molecular logic of sodium-coupled neurotransmitter transporters. Philosophical Transactions of the Royal Society B: Biological Sciences, 2009, 364, 149-154.	4.0	50
99	Insights into transport mechanism from LeuT engineered to transport tryptophan. EMBO Journal, 2012, 31, 228-235.	7.8	45
100	The antidepressant drug vilazodone is an allosteric inhibitor of the serotonin transporter. Nature Communications, 2021, 12, 5063.	12.8	45
101	Vibrio cholerae cytolysin is composed of an alpha-hemolysin-like core. Protein Science, 2003, 12, 379-383.	7.6	42
102	Insights into the mechanism and pharmacology of neurotransmitter sodium symporters. Current Opinion in Structural Biology, 2019, 54, 161-170.	5.7	42
103	Total Gene Synthesis: Novel Single-Step and Convergent Strategies Applied to the Construction of a 779 Base Pair Bacteriorhodopsin Gene. Journal of the American Chemical Society, 1994, 116, 8799-8800.	13.7	39
104	GluR2 ligand-binding core complexes: importance of the isoxazolol moiety and 5-substituent for the binding mode of AMPA-type agonists. FEBS Letters, 2002, 531, 173-178.	2.8	39
105	Substrate binds in the S1 site of the F253A mutant of LeuT, a neurotransmitter sodium symporter homologue. EMBO Reports, 2012, 13, 861-866.	4.5	39
106	Architecture and assembly mechanism of native glycine receptors. Nature, 2021, 599, 513-517.	27.8	39
107	Structure and mechanism of AMPA receptor — auxiliary protein complexes. Current Opinion in Structural Biology, 2019, 54, 104-111.	5.7	38
108	Structural, functional, and behavioral insights of dopamine dysfunction revealed by a deletion in <i>SLC6A3</i> . Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 3853-3862.	7.1	35

#	Article	IF	CITATIONS
109	The long and short of colicin action: the molecular basis for the biological activity of channel-forming colicins. Structure, 1997, 5, 313-317.	3.3	34
110	Unanticipated parallels in architecture and mechanism between ATP-gated P2X receptors and acid sensing ion channels. Current Opinion in Structural Biology, 2013, 23, 277-284.	5.7	34
111	Divalent cation and chloride ion sites of chicken acid sensing ion channel 1a elucidated by x-ray crystallography. PLoS ONE, 2018, 13, e0202134.	2.5	33
112	Overexpression of bacterioâ€opsin in <i>Escherichia coli</i> as a waterâ€soluble fusion to maltose binding protein: Efficient regeneration of the fusion protein and selective cleavage with trypsin. Protein Science, 1996, 5, 456-467.	7.6	32
113	Amino Terminal Domains of the NMDA Receptor Are Organized as Local Heterodimers. PLoS ONE, 2011, 6, e19180.	2.5	30
114	A novel member of the split βαβ fold: Solution structure of the hypothetical protein YML108W fromSaccharomyces cerevisiae. Protein Science, 2003, 12, 1136-1140.	7.6	27
115	[4] Membrane protein crystallization: Application of sparse matrices to the α-hemolysin heptamer. Methods in Enzymology, 1997, 276, 60-74.	1.0	24
116	Light-coupled cryo-plunger for time-resolved cryo-EM. Journal of Structural Biology, 2020, 212, 107624.	2.8	23
117	A Vibrational Spectroscopic Investigation of Interactions of Agonists with CluRO a Prokaryotic Glutamate Receptor. Biochemistry, 2002, 41, 1602-1608.	2.5	21
118	Thermostabilization of the Human Serotonin Transporter in an Antidepressant-Bound Conformation. PLoS ONE, 2015, 10, e0145688.	2.5	21
119	Structural transitions in crystals of native aspartate carbamoyltransferase Proceedings of the National Academy of Sciences of the United States of America, 1989, 86, 845-848.	7.1	19
120	It's not just a phase: crystallization and X-ray structure determination of bacteriorhodopsin in lipidic cubic phases. Structure, 1998, 6, 5-10.	3.3	19
121	Thermostabilization and purification of the human dopamine transporter (hDAT) in an inhibitor and allosteric ligand bound conformation. PLoS ONE, 2018, 13, e0200085.	2.5	18
122	The intracellular domain of homomeric glycine receptors modulates agonist efficacy. Journal of Biological Chemistry, 2021, 296, 100387.	3.4	17
123	Crystal structure of the Glu-239Gln mutant of aspartate carbamoyltransferase at 3.1-A resolution: an intermediate quaternary structure Proceedings of the National Academy of Sciences of the United States of America, 1989, 86, 8212-8216.	7.1	16
124	Thermostabilization, Expression, Purification, and Crystallization of the Human Serotonin Transporter Bound to S -citalopram. Journal of Visualized Experiments, 2016, , .	0.3	14
125	Roll out the barrel. Nature Structural Biology, 1998, 5, 931-932.	9.7	11
126	Putting the Pieces Together: the Hair Cell Transduction Complex. JARO - Journal of the Association for Research in Otolaryngology, 2021, 22, 601-608.	1.8	11

#	Article	IF	CITATIONS
127	Extracellular loops of the serotonin transporter act as a selectivity filter for drug binding. Journal of Biological Chemistry, 2021, 297, 100863.	3.4	8
128	Novel Dicarboxylate Selectivity in an Insect Glutamate Transporter Homolog. PLoS ONE, 2013, 8, e70947.	2.5	7
129	Structure-based functional design of chemical ligands for AMPA-subtype glutamate receptors. Journal of Molecular Neuroscience, 2002, 19, 113-116.	2.3	6
130	Expression and purification of a functional heteromeric GABAA receptor for structural studies. PLoS ONE, 2018, 13, e0201210.	2.5	6
131	Molecular structures and conformations of protocadherin-15 and its complexes on stereocilia elucidated by cryo-electron tomography. ELife, 2021, 10, .	6.0	6
132	Crystallization of the α-hemolysin heptamer solubilized in decyldimethyl- and decyldiethylphosphine oxide. Acta Crystallographica Section D: Biological Crystallography, 1998, 54, 276-278.	2.5	4
133	High Level Production, Characterization and Construct Optimization of the Ionotropic Glutamate Receptor Ligand Binding Core. Tetrahedron, 2000, 56, 9409-9419.	1.9	4
134	HOTSPUR: A Real-time Interactive Preprocessing System for Cryo-EM Data. Microscopy and Microanalysis, 2019, 25, 1212-1213.	0.4	4
135	Single potassium ion seeks open channel for transmembrane travels: tales from the KcsA structure. Structure, 1998, 6, 1221-1226.	3.3	3
136	NMDA Receptors' Structural Asymmetry. Microscopy and Microanalysis, 2019, 25, 1218-1219.	0.4	3
137	Pore Architecture and ion Sites of Acid Sensing ion Channels and P2X Receptors. Biophysical Journal, 2010, 98, 610a.	0.5	1
138	Mechanism of NMDA Receptor Channel Block by MK-801 and Memantine. Biophysical Journal, 2018, 114, 24a-25a.	0.5	1
139	Strategy for Compositional Analysis of the Hair Cell Mechanotransduction Complex Using TIRF Microscopy. Microscopy and Microanalysis, 2019, 25, 1266-1267.	0.4	1
140	Architecture, Symmetry and Mechanism of Ionotropic Glutamate Receptors. Biophysical Journal, 2011, 100, 363a.	0.5	0
141	1PT103 Mechanism of ATP binding and channel activation in P2X receptors(The 50th Annual Meeting of) Tj ETO	Qq1 1 0.78	4314 rgBT /
142	Imaged by Cryo-EM, Activated and Desensitized GluA2 Glutamate Receptors Show Extreme Flexibility. Biophysical Journal, 2014, 106, 30a.	0.5	0
143	Activation and Desensitization Mechanism of AMPA Receptor-TARP Complex by Cryo-EM. Biophysical Journal, 2018, 114, 125a.	0.5	0
144	Ibogaine Binds Human Serotonin Transporter in Multiple Functional States. Biophysical Journal, 2019, 116, 557a.	0.5	0

#	Article	IF	CITATIONS
145	Image collection strategies for single particle cryoEM. Microscopy and Microanalysis, 2021, 27, 1904-1906.	0.4	0
146	Activation and Desensitization Mechanism of AMPA Receptor - TARP Complex by cryo-EM. SSRN Electronic Journal, 0, , .	0.4	0
147	Visualizing the binding mode of the antidepressant vilazodone on the serotonin transporter by cryo-EM. Biophysical Journal, 2022, 121, 26a.	0.5	Ο