Gloria Marquez-Ruiz

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6486337/publications.pdf Version: 2024-02-01

	109321	175258
3,322	35	52
citations	h-index	g-index
113	113	2396
docs citations	times ranked	citing authors
	citations 113	3,322 35 citations h-index 113 113

#	Article	IF	CITATIONS
1	Incorporation of hydroxytyrosol alkyl esters of different chain length as antioxidant strategy in walnut oil spray-dried microparticles with a sodium alginate outer layer. Food Chemistry, 2022, 395, 133595.	8.2	2
2	Hydroxypropyl-inulin as a novel encapsulating agent of fish oil by conventional and water-free spray drying. Food Hydrocolloids, 2021, 113, 106518.	10.7	7
3	Chemical Changes of Hydroperoxy-, Epoxy-, Keto- and Hydroxy-Model Lipids under Simulated Gastric Conditions. Foods, 2021, 10, 2035.	4.3	3
4	Stability of Bioactive Compounds in Olive-Pomace Oil at Frying Temperature and Incorporation into Fried Foods. Foods, 2021, 10, 2906.	4.3	14
5	Performance of Olive-Pomace Oils in Discontinuous and Continuous Frying. Comparative Behavior with Sunflower Oils and High-Oleic Sunflower Oils. Foods, 2021, 10, 3081.	4.3	13
6	Influence of oil droplet size on the oxidative stability of the free and encapsulated fractions of freezeâ€dried microencapsulated sunflower oil. International Journal of Food Science and Technology, 2020, 55, 833-840.	2.7	7
7	RP-UHPLC–DAD-QTOF-MS As a Powerful Tool of Oleuropein and Ligstroside Characterization in Olive-Leaf Extract and Their Contribution to the Improved Performance of Refined Olive-Pomace Oil during Heating. Journal of Agricultural and Food Chemistry, 2020, 68, 12039-12047.	5.2	6
8	Influence of the Location of Ascorbic Acid in Walnut Oil Spray-Dried Microparticles with Outer Layer on the Physical Characteristics and Oxidative Stability. Antioxidants, 2020, 9, 1272.	5.1	2
9	Hyperbaric cold storage: Pressure as an effective tool for extending the shelf-life of refrigerated mackerel (Scomber scombrus, L.). Innovative Food Science and Emerging Technologies, 2019, 51, 41-50.	5.6	40
10	Influence of the Physical State of Spray-Dried Flavonoid-Inulin Microparticles on Oxidative Stability of Lipid Matrices. Antioxidants, 2019, 8, 520.	5.1	10
11	Effects of the drying method on the oxidative stability of the free and encapsulated fractions of microencapsulated sunflower oil. International Journal of Food Science and Technology, 2019, 54, 2520-2528.	2.7	12
12	Comparative study of polymers and total polar compounds as indicators of refined oil degradation during frying. European Food Research and Technology, 2019, 245, 967-976.	3.3	22
13	Concentrates of triterpenic acids obtained from crude olive pomace oils: characterization and evaluation of their potential antioxidant activity. Journal of the Science of Food and Agriculture, 2018, 98, 4837-4844.	3.5	15
14	Influence of solvent and lecithin in microencapsulation of fish oil by spray-drying. RSC Advances, 2018, 8, 4172-4181.	3.6	4
15	Quantitative determination of major oxidation products in edible oils by direct NP-HPLC-DAD analysis. Journal of Chromatography A, 2018, 1547, 62-70.	3.7	17
16	Microencapsulation of Conjugated Linoleic Acid (CLA)â€Rich Oil with Skimmed Milk Components Protects against Polymerization. JAOCS, Journal of the American Oil Chemists' Society, 2018, 95, 1399-1408.	1.9	3
17	Occurrence of lipid oxidation compounds in commercialised functional dairy products. International Dairy Journal, 2018, 86, 27-35.	3.0	5
18	Effect of spray-drying with organic solvents on the encapsulation, release and stability of fish oil. Food Chemistry, 2018, 263, 283-291.	8.2	24

#	Article	IF	CITATIONS
19	Frying performance of olive-extracted oils. Grasas Y Aceites, 2018, 69, 264.	0.9	8
20	Design of flavonoid microparticles with channel forming properties to improve oxidative stability of sunflower oil. European Journal of Lipid Science and Technology, 2017, 119, 1700041.	1.5	4
21	Effect of Sprayâ€Dried Flavonoid Microparticles on Oxidative Stability of Methyl Linoleate as Lipid Model System. JAOCS, Journal of the American Oil Chemists' Society, 2017, 94, 99-105.	1.9	2
22	Antioxidant Activity and Kinetics Studies of Quercetin, Epicatechin and Naringenin in Bulk Methyl Linoleate. JAOCS, Journal of the American Oil Chemists' Society, 2017, 94, 1189-1196.	1.9	4
23	Impact of the characteristics of fresh potatoes available in-retail on exposure to acrylamide: Case study for French fries. Food Control, 2017, 73, 1407-1414.	5.5	25
24	Risk/benefit considerations of a new formulation of wheat-based biscuit supplemented with different amounts of chia flour. LWT - Food Science and Technology, 2016, 73, 528-535.	5.2	66
25	Oxidation of a functional, CLA-rich oil: determination of volatile and non-volatile compounds. European Food Research and Technology, 2016, 242, 1993-2000.	3.3	5
26	An investigation of process contaminants' formation during the deep frying of breadcrumbs using a bread coat model. Food and Function, 2016, 7, 1645-1654.	4.6	7
27	Inhibition of Hydroperoxyâ€, Keto―and Hydroxyâ€FAME by Alpha―and Deltaâ€Tocopherol at Rancimat Conditions. JAOCS, Journal of the American Oil Chemists' Society, 2016, 93, 93-103.	1.9	4
28	Possible adverse effects of frying with vegetable oils. British Journal of Nutrition, 2015, 113, S49-S57.	2.3	65
29	New Analytical Evidence of Discontinuous Oxidation in Dried Microencapsulated Lipids. JAOCS, Journal of the American Oil Chemists' Society, 2015, 92, 1601-1607.	1.9	7
30	Effect of sodium replacement in cookies on the formation of process contaminants and lipid oxidation. LWT - Food Science and Technology, 2015, 62, 633-639.	5.2	40
31	Effectiveness of $\hat{1}$ ±-, $\hat{1}$ ³ - and $\hat{1}$ -Tocopherol in a CLA-Rich Oil. Antioxidants, 2014, 3, 176-188.	5.1	4
32	Volatile compounds in thermoxidized conjugated and unconjugated linoleic acids. European Journal of Lipid Science and Technology, 2014, 116, 367-369.	1.5	2
33	Influence of Picual Olive Ripening on Virgin Olive Oil Alteration and Stability during Potato Frying. Journal of Agricultural and Food Chemistry, 2014, 62, 11637-11646.	5.2	20
34	Antioxidants in frying: Analysis and evaluation of efficacy. European Journal of Lipid Science and Technology, 2014, 116, 1441-1450.	1.5	27
35	Formation of oxidation products in edible vegetable oils analyzed as FAME derivatives by HPLC-UV-ELSD. Food Research International, 2014, 62, 1080-1086.	6.2	22
36	Release kinetics of flavonoids in methyl linoleate from microparticles designed with inulin and channelizing agent. Food Research International, 2014, 64, 99-105.	6.2	17

#	Article	IF	CITATIONS
37	Analysis of used frying oils. Lipid Technology, 2013, 25, 159-162.	0.3	12
38	Influence of homogenisation conditions and drying method on physicochemical properties of dehydrated emulsions containing different solid components. International Journal of Food Science and Technology, 2013, 48, 1498-1508.	2.7	14
39	Effect of classic sterilization on lipid oxidation in model liquid milk-based infant and follow-on formulas. European Journal of Lipid Science and Technology, 2012, 114, 1373-1380.	1.5	7
40	Evaporative light scattering detector in normal-phase high-performance liquid chromatography determination of FAME oxidation products. Journal of Chromatography A, 2012, 1254, 62-70.	3.7	15
41	Formation of Hydroperoxyâ€, Keto―and Hydroxyâ€Dienes in FAME from Oils: Influence of Temperature and Addition of αâ€Tocopherol. JAOCS, Journal of the American Oil Chemists' Society, 2012, 89, 675-684.	1.9	15
42	Quantitative analysis of hydroperoxy-, keto- and hydroxy-dienes in refined vegetable oils. Journal of Chromatography A, 2012, 1229, 190-197.	3.7	18
43	Determination of 10-hydroxystearic, 10-ketostearic, 8-hydroxypalmitic, and 8-ketopalmitic acids in milk fat by solid-phase extraction plus gas chromatography-mass spectrometry. Journal of Dairy Science, 2011, 94, 4810-4819.	3.4	17
44	Evaluation of lipid oxidation in horse mackerel patties covered with borage-containing film during frozen storage. Food Chemistry, 2011, 124, 1393-1403.	8.2	57
45	Quantitation of Hydroperoxyâ€, Keto―and Hydroxyâ€Dienes During Oxidation of FAMEs from Highâ€Linoleic and Highâ€Oleic Sunflower Oils. JAOCS, Journal of the American Oil Chemists' Society, 2010, 87, 1271-1279.	1.9	22
46	Lipid stability in powdered infant formula stored at ambient temperatures. International Journal of Food Science and Technology, 2010, 45, 2337-2344.	2.7	19
47	Headspace solid-phase microextraction of oil matrices heated at high temperature and phthalate esters determination by gas chromatography multistage mass spectrometry. Talanta, 2010, 80, 2076-2082.	5.5	74
48	Antioxidant Activity of Added Phenolic Compounds in Freezeâ€Dried Microencapsulated Sunflower Oil. JAOCS, Journal of the American Oil Chemists' Society, 2009, 86, 445-452.	1.9	20
49	Volatile oxidation compounds in a conjugated linoleic acid-rich oil. Food Chemistry, 2009, 113, 926-931.	8.2	53
50	A follow-up oxidation study in dried microencapsulated oils under the accelerated conditions of the Rancimat test. Food Research International, 2009, 42, 56-62.	6.2	39
51	Influence of relative humidity on oxidation of the free and encapsulated oil fractions in freeze-dried microencapsulated oils. Food Research International, 2009, 42, 1492-1500.	6.2	39
52	Lipid Oxidation in Functional Dairy Products. Current Nutrition and Food Science, 2009, 5, 209-216.	0.6	11
53	Influence of two lipid extraction procedures on the peroxide value in powdered infant formulas. European Food Research and Technology, 2008, 226, 1159-1166.	3.3	12
54	Formation of oxidation compounds in sunflower and olive oils under oxidative stability index conditions. European Journal of Lipid Science and Technology, 2008, 110, 465-471.	1.5	39

Gloria Marquez-Ruiz

#	Article	IF	CITATIONS
55	Changes in the Lipid Composition of Powdered Infant Formulas during Long-Term Storage. Journal of Agricultural and Food Chemistry, 2007, 55, 6533-6538.	5.2	19
56	Nutritional and Physiological Effects of Used Frying Oils and Fats. , 2007, , 173-203.		14
57	Formation and Analysis of Oxidized Monomeric, Dimeric, and Higher Oligomeric Triglycerides. , 2007, , 87-110.		25
58	A direct and fast method to monitor lipid oxidation progress in model fatty acid methyl esters by high-performance size-exclusion chromatography. Journal of Chromatography A, 2007, 1165, 122-127.	3.7	23
59	Differences in Oxidation Kinetics Between Conjugated and Nonâ€Conjugated Methyl Linoleate. Lipids, 2007, 42, 1085-1092.	1.7	35
60	Effect of Heating and Frying on Oil and Food Fatty Acids. Food Additives, 2007, , 511-543.	0.1	2
61	Heterogeneous Aspects of Lipid Oxidation in Dried Microencapsulated Oils. Journal of Agricultural and Food Chemistry, 2006, 54, 1722-1729.	5.2	87
62	Analysis of Nonvolatile Lipid Oxidation Compounds by High-Performance Size-Exclusion Chromatography. , 2005, , .		11
63	Quantitation of Short-Chain Glycerol-Bound Compounds in Thermoxidized and Used Frying Oils. A Monitoring Study during Thermoxidation of Olive and Sunflower Oils. Journal of Agricultural and Food Chemistry, 2005, 53, 4006-4011.	5.2	39
64	Oxidative stability of sunflower oils differing in unsaturation degree during long-term storage at room temperature. JAOCS, Journal of the American Oil Chemists' Society, 2004, 81, 577-583.	1.9	119
65	Antioxidant activity of phenolic compounds in sunflower oil-in-water emulsions containing sodium caseinate and lactose. European Journal of Lipid Science and Technology, 2004, 106, 325-333.	1.5	29
66	Effectiveness of dimethylpolysiloxane during deep frying. European Journal of Lipid Science and Technology, 2004, 106, 752-758.	1.5	23
67	Formation of short-chain glycerol-bound oxidation products and oxidised monomeric triacylglycerols during deep-frying and occurrence in used frying fats. European Journal of Lipid Science and Technology, 2004, 106, 728-735.	1.5	51
68	Formation and Evolution of Monoepoxy Fatty Acids in Thermoxidized Olive and Sunflower Oils and Quantitation in Used Frying Oils from Restaurants and Fried-Food Outlets. Journal of Agricultural and Food Chemistry, 2004, 52, 4438-4443.	5.2	85
69	Effect of temperature and addition of α-tocopherol on the oxidation of trilinolein model systems. Lipids, 2003, 38, 233-240.	1.7	28
70	Oxidized fats in foods. Current Opinion in Clinical Nutrition and Metabolic Care, 2003, 6, 157-163.	2.5	102
71	Oxidation in Dried Microencapsulated Oils. , 2003, , .		8
72	Variables affecting lipid oxidation in dried microencapsulated oils. Grasas Y Aceites, 2003, 54, .	0.9	96

#	Article	IF	CITATIONS
73	Loss of tocopherols and formation of degradation compounds at frying temperatures in oils differing in degree of unsaturation and natural antioxidant content. Journal of the Science of Food and Agriculture, 2002, 82, 1696-1702.	3.5	124
74	Evolution of short-chain glycerol-bound compounds during thermoxidation of FAME and monoacid TAG. JAOCS, Journal of the American Oil Chemists' Society, 2002, 79, 279-285.	1.9	33
75	Sensitive and accurate quantitation of monoepoxy fatty acids in thermoxidized oils by gas–liquid chromatography. Journal of Chromatography A, 2002, 982, 145-152.	3.7	48
76	Interactions between fat and food during deep-frying. European Journal of Lipid Science and Technology, 2000, 102, 521-528.	1.5	163
77	Selection of methylation procedures for quantitation of short-chain glycerol-bound compounds formed during thermoxidation. Journal of Chromatography A, 1999, 863, 171-181.	3.7	37
78	Influence of used frying oil quality and natural tocopherol content on oxidative stability of fried potatoes. JAOCS, Journal of the American Oil Chemists' Society, 1999, 76, 421-425.	1.9	44
79	Thermoxidative stability of triacylglycerols from mutant sunflower seeds. JAOCS, Journal of the American Oil Chemists' Society, 1999, 76, 1169-1174.	1.9	37
80	Loss of tocopherols and formation of degradation compounds in triacylglycerol model systems heated at high temperature. Journal of the Science of Food and Agriculture, 1999, 79, 1923-1928.	3.5	73
81	Characterization, quantitation and evolution of monoepoxy compounds formed in model systems of fatty acid methyl esters and monoacid triglycerides heated at high temperature. Grasas Y Aceites, 1999, 50, 53-59.	0.9	33
82	Applications of chromatographic techniques to evaluate enzymatic hydrolysis of oxidized and polymeric triglycerides by pancreatic lipase in vitro. JAOCS, Journal of the American Oil Chemists' Society, 1998, 75, 119-126.	1.9	32
83	Effect of fatty acid positional distribution and triacylglycerol composition on lipid by-products formation during heat treatment: I. polymer formation. JAOCS, Journal of the American Oil Chemists' Society, 1998, 75, 1065-1071.	1.9	14
84	Title is missing!. Grasas Y Aceites, 1998, 49, 331-335.	0.9	55
85	Relationships between quality of crude and refined edible oils based on quantitation of minor glyceridic compounds. Food Chemistry, 1997, 60, 549-554.	8.2	51
86	Characterisation of aldehydic acids in used and unused frying oils. Journal of Chromatography A, 1997, 776, 245-254.	3.7	38
87	A simple procedure to evaluate the performance of fats and oils at frying temperatures Grasas Y Aceites, 1997, 48, 231-235.	0.9	43
88	Comparative performance of steam and nitrogen as stripping gas in physical refining of edible oils. JAOCS, Journal of the American Oil Chemists' Society, 1996, 73, 1641-1645.	1.9	23
89	Rapid, quantitative determination of polar compounds in fats and oils by solid-phase extraction and size-exclusion chromatography using monostearin as internal standard. Journal of Chromatography A, 1996, 749, 55-60.	3.7	123
90	Short-Chain Fatty Acid Formation during Thermoxidation and Frying. Journal of the Science of Food and Agriculture, 1996, 70, 120-126.	3.5	45

#	Article	IF	CITATIONS
91	Assessments on the digestibility of oxidized compounds from [1-14C]linoleic acid using a combination of chromatographic techniques. Biomedical Applications, 1996, 675, 1-8.	1.7	14
92	Title is missing!. Grasas Y Aceites, 1996, 47, 5-13.	0.9	45
93	Title is missing!. Grasas Y Aceites, 1996, 47, 20-25.	0.9	34
94	Title is missing!. Grasas Y Aceites, 1996, 47, 48-53.	0.9	47
95	Title is missing!. Grasas Y Aceites, 1996, 47, 54-58.	0.9	27
96	Determinación cuantitativa de componentes mayoritarios presentes en los destilados obtenidos en la desodorización de aceites y grasas. Grasas Y Aceites, 1995, 46, 21-25.	0.9	6
97	Calidad de las grasas de fritura en el sector de restauración de AndalucÃa. Grasas Y Aceites, 1995, 46, 115-120.	0.9	20
98	Control de calidad de las grasas de fritura. Validez de los métodos de ensayos rápidos en sustitución de la determinación de compuestos polares. Grasas Y Aceites, 1995, 46, 196-201.	0.9	9
99	Evaluation of susceptibility to oxidation of linoleyl derivatives by thin-layer chromatography with flame ionization detection. Journal of Chromatography A, 1994, 662, 363-368.	3.7	5
100	Isolation and characterization of sucrose polyesters. JAOCS, Journal of the American Oil Chemists' Society, 1994, 71, 385-390.	1.9	12
101	Characterization of sucrose polyesters-triacylglycerols mixtures. JAOCS, Journal of the American Oil Chemists' Society, 1994, 71, 1017-1020.	1.9	6
102	Thermal stability and frying performance of genetically modified sunflower seed (Helianthus annuus) Tj ETQqO O	D rgBT /Ov	erlock 10 Tf
103	Evaluation of Hydrolysis and Absorption of Thermally Oxidized Olive Oil in Non-Absorbed Lipids in the Rat. Annals of Nutrition and Metabolism, 1993, 37, 121-128.	1.9	29
104	Aceites de oliva vÃrgenes y refinados: Diferencias en componentes menores glicerÃdicos. Grasas Y Aceites, 1993, 44, 91-96.	0.9	10
105	Changes in Endogenous Lipid Excretion in Rats Fed Diets Containing Non-Heated and Thermally Oxidized Olive Oils. Scandinavian Journal of Gastroenterology, 1992, 27, 1069-1076.	1.5	6
106	Modification of Triacylglycerides and Apolipoprotein B in Rats Fed Diets Containing Whole Milk, Skim Milk and Milk Proteins. Journal of Nutrition, 1992, 122, 1840-1846.	2.9	5
107	Comparison of oxidation of sucrose octaesters and triacylglycerols derived from olive oil. Food Chemistry, 1992, 44, 357-362.	8.2	5

108Digestibility of fatty acid monomers, dimers and polymers in the rat. JAOCS, Journal of the American
Oil Chemists' Society, 1992, 69, 930-934.1.931

#	Article	IF	CITATIONS
109	Influencia de la cantidad, calidad y tipo de grasa de la dieta sobre la composición y distribución de ácidos grasos del tejido adiposo de ratas. Grasas Y Aceites, 1992, 43, 87-92.	0.9	1
110	Absorción de grasas termoxidadas. II. Influencia del nivel de alteración y porcentaje de grasa en la dieta. Grasas Y Aceites, 1992, 43, 198-230.	0.9	3
111	Lipid Changes during Frying of Frozen Prefried Foods. Journal of Food Science, 1991, 56, 1644-1647.	3.1	59
112	Absorción de grasas termoxidadas. I. Reproducibilidad y exactitud de las técnicas analÃŧicas previas a la evaluación de los lÃpidos no absorbidos. Grasas Y Aceites, 1991, 42, 32-37.	0.9	5
113	Combination of adsorption and size-exclusion chromatography for the determination of fatty acid monomers, dimers and polymers. Journal of Chromatography A, 1990, 514, 37-44.	3.7	38