
Diego G Loyola

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6485881/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Hyperspectral Satellite Remote Sensing of Aerosol Parameters: Sensitivity Analysis and Application to TROPOMI/S5P. Frontiers in Environmental Science, 2022, 9, .	3.3	4
2	Evaluating the assimilation of S5P/TROPOMI near real-time SO ₂ columns and layer height data into the CAMS integrated forecasting system (CY47R1), based on a case study of the 2019 Raikoke eruption. Geoscientific Model Development, 2022, 15, 971-994.	3.6	9
3	TROPOspheric Monitoring Instrument observations of total column water vapour: Algorithm and validation. Science of the Total Environment, 2022, 821, 153232.	8.0	7
4	Volcanic SO ₂ layer height by TROPOMI/S5P: evaluation against IASI/MetOp and CALIOP/CALIPSO observations. Atmospheric Chemistry and Physics, 2022, 22, 5665-5683.	4.9	5
5	Global total ozone recovery trends attributed to ozone-depleting substance (ODS) changes derived from five merged ozone datasets. Atmospheric Chemistry and Physics, 2022, 22, 6843-6859.	4.9	29
6	Global, regional and seasonal analysis of total ozone trends derived from the 1995–2020 GTO-ECV climate data record. Atmospheric Chemistry and Physics, 2022, 22, 6861-6878.	4.9	9
7	Three-Dimensional Distribution of Biomass Burning Aerosols from Australian Wildfires Observed by TROPOMI Satellite Observations. Remote Sensing, 2022, 14, 2582.	4.0	1
8	Quantification of lightning-produced NO _{<i>x</i>} over the Pyrenees and the Ebro Valley by using different TROPOMI-NO ₂ and cloud research products. Atmospheric Measurement Techniques, 2022, 15, 3329-3351.	3.1	6
9	Evaluation of Water Vapor Product from TROPOMI and GOME-2 Satellites against Ground-Based GNSS Data over Europe. Atmosphere, 2022, 13, 1079.	2.3	1
10	Record low ozone values over the Arctic in boreal spring 2020. Atmospheric Chemistry and Physics, 2021, 21, 617-633.	4.9	34
11	Validation of the Sentinel-5 Precursor TROPOMI cloud data with Cloudnet, Aura OMI O ₂ –O ₂ , MODIS, and Suomi-NPP VIIRS. Atmospheric Measurement Techniques, 2021, 14, 2451-2476.	3.1	25
12	A method for random uncertainties validation and probing the natural variability with application to TROPOMI on board Sentinel-5P total ozone measurements. Atmospheric Measurement Techniques, 2021, 14, 2993-3002.	3.1	7
13	Volcanic SO ₂ effective layer height retrieval for the Ozone Monitoring Instrument (OMI) using a machine-learning approach. Atmospheric Measurement Techniques, 2021, 14, 3673-3691.	3.1	5
14	Optimization of Aerosol Model Selection for TROPOMI/S5P. Remote Sensing, 2021, 13, 2489.	4.0	2
15	Global Climate. Bulletin of the American Meteorological Society, 2021, 102, S11-S142.	3.3	36
16	Nitrogen dioxide decline and rebound observed by GOME-2 and TROPOMI during COVID-19 pandemic. Air Quality, Atmosphere and Health, 2021, 14, 1737-1755.	3.3	10
17	Comparative assessment of TROPOMI and OMI formaldehyde observations and validation against MAX-DOAS network column measurements. Atmospheric Chemistry and Physics, 2021, 21, 12561-12593.	4.9	57
18	Global Monitoring of Volcanic SO2 Degassing Using Sentinel-5 Precursor Tropomi. , 2021, , .		2

Global Monitoring of Volcanic SO2 Degassing Using Sentinel-5 Precursor Tropomi. , 2021, , .

#	Article	IF	CITATIONS
19	Inconsistencies in sulfur dioxide emissions from the Canadian oil sands and potential implications. Environmental Research Letters, 2021, 16, 014012.	5.2	11
20	An improved TROPOMI tropospheric NO ₂ research product over Europe. Atmospheric Measurement Techniques, 2021, 14, 7297-7327.	3.1	16
21	A sulfur dioxide Covariance-Based Retrieval Algorithm (COBRA): application to TROPOMI reveals new emission sources. Atmospheric Chemistry and Physics, 2021, 21, 16727-16744.	4.9	19
22	TROPOMI tropospheric ozone column data: geophysical assessment and comparison to ozonesondes, GOME-2B and OMI. Atmospheric Measurement Techniques, 2021, 14, 7405-7433.	3.1	14
23	An Overview of Neural Network Methods for Predicting Uncertainty in Atmospheric Remote Sensing. Remote Sensing, 2021, 13, 5061.	4.0	2
24	Glyoxal tropospheric column retrievals from TROPOMI – multi-satellite intercomparison and ground-based validation. Atmospheric Measurement Techniques, 2021, 14, 7775-7807.	3.1	7
25	Model Selection in Atmospheric Remote Sensing with Application to Aerosol Retrieval from DSCOVR/EPIC. Part 2: Numerical Analysis. Remote Sensing, 2020, 12, 3656.	4.0	5
26	Model Selection in Atmospheric Remote Sensing with an Application to Aerosol Retrieval from DSCOVR/EPIC, Part 1: Theory. Remote Sensing, 2020, 12, 3724.	4.0	7
27	Comparison of GTO-ECV and adjusted MERRA-2 total ozone columns from the last 2 decades and assessment of interannual variability. Atmospheric Measurement Techniques, 2020, 13, 1633-1654.	3.1	5
28	Applying FP_ILM to the retrieval of geometry-dependent effective Lambertian equivalent reflectivity (GE_LER) daily maps from UVN satellite measurements. Atmospheric Measurement Techniques, 2020, 13, 985-999.	3.1	34
29	Anthropogenic and volcanic point source SO ₂ emissions derived from TROPOMI on board Sentinel-5 Precursor: first results. Atmospheric Chemistry and Physics, 2020, 20, 5591-5607.	4.9	39
30	Satellite-based estimation of surface NO2 concentrations over east-central China: A comparison of POMINO and OMNO2d data. Atmospheric Environment, 2020, 224, 117322.	4.1	37
31	Spatially and temporally coherent reconstruction of tropospheric NO ₂ over China combining OMI and GOME-2B measurements. Environmental Research Letters, 2020, 15, 125011.	5.2	23
32	Global Climate. Bulletin of the American Meteorological Society, 2020, 101, S9-S128.	3.3	61
33	TROPOMI–Sentinel-5 Precursor formaldehyde validation using an extensive network of ground-based Fourier-transform infrared stations. Atmospheric Measurement Techniques, 2020, 13, 3751-3767.	3.1	66
34	Total column water vapor retrieval for Global Ozone Monitoring Experience-2 (GOME-2) visible blue observations. Atmospheric Measurement Techniques, 2020, 13, 4169-4193.	3.1	18
35	TROPOMI aerosol products: evaluation and observations of synoptic-scale carbonaceous aerosol plumes during 2018–2020. Atmospheric Measurement Techniques, 2020, 13, 6789-6806.	3.1	36
36	Improvement of EPIC/DSCOVR Image Registration by Means of Automatic Coastline Detection. Remote Sensing, 2019, 11, 1747.	4.0	3

#	Article	IF	CITATIONS
37	TROPOMI/S5P total ozone column data: global ground-based validation and consistency with other satellite missions. Atmospheric Measurement Techniques, 2019, 12, 5263-5287.	3.1	77
38	The use of QBO, ENSO, and NAO perturbations in the evaluation of GOME-2 MetOp A total ozone measurements. Atmospheric Measurement Techniques, 2019, 12, 987-1011.	3.1	2
39	Monitoring and assimilation tests with TROPOMI data in the CAMS system: near-real-time total column ozone. Atmospheric Chemistry and Physics, 2019, 19, 3939-3962.	4.9	20
40	Global monitoring of volcanic SO2 degassing with unprecedented resolution from TROPOMI onboard Sentinel-5 Precursor. Scientific Reports, 2019, 9, 2643.	3.3	126
41	Sulfur dioxide layer height retrieval from Sentinel-5 Precursor/TROPOMI using FP_ILM. Atmospheric Measurement Techniques, 2019, 12, 5503-5517.	3.1	58
42	Fast Stochastic Radiative Transfer Models for Trace Gas and Cloud Property Retrievals Under Cloudy Conditions. Springer Series in Light Scattering, 2018, , 231-277.	0.6	7
43	Total ozone trends from 1979 to 2016 derived from five merged observational datasets – the emergence into ozone recovery. Atmospheric Chemistry and Physics, 2018, 18, 2097-2117.	4.9	118
44	Inter-comparison of integrated water vapor from satellite instruments using reference GPS data at the Iberian Peninsula. Remote Sensing of Environment, 2018, 204, 729-740.	11.0	45
45	Aerosol Retrievals from DSCOVR Measurements. , 2018, , .		1
46	Validation of Atmospheric Water Vapor from Several Satellite Instruments Using GPS Measurements at Spanish Stations Under Cloud-Free Conditions. , 2018, , .		0
47	Validation of the IASI FORLI/EUMETSAT ozone products using satellite (GOME-2), ground-based (Brewer–Dobson, SAOZ, FTIR) and ozonesonde measurements. Atmospheric Measurement Techniques, 2018, 11, 5125-5152.	3.1	47
48	The Global Ozone Monitoring Experiment: review of in-flight performance and new reprocessed 1995–2011 level 1 product. Atmospheric Measurement Techniques, 2018, 11, 5237-5259.	3.1	1
49	Algorithm theoretical baseline for formaldehyde retrievals from S5P TROPOMI and from the QA4ECV project. Atmospheric Measurement Techniques, 2018, 11, 2395-2426.	3.1	127
50	On the Cause of Recent Variations in Lower Stratospheric Ozone. Geophysical Research Letters, 2018, 45, 5718-5726.	4.0	87
51	Quality assessment of the Ozone_cci Climate Research Data Package (release 2017) – Part 1: Ground-based validation of total ozone column data products. Atmospheric Measurement Techniques, 2018, 11, 1385-1402.	3.1	26
52	The operational cloud retrieval algorithms from TROPOMI on board Sentinel-5 Precursor. Atmospheric Measurement Techniques, 2018, 11, 409-427.	3.1	87
53	Linearized radiative transfer models for retrieval of cloud parameters from EPIC/DSCOVR measurements. Journal of Quantitative Spectroscopy and Radiative Transfer, 2018, 213, 241-251.	2.3	9
54	Radiative transfer models for retrieval of cloud parameters from EPIC/DSCOVR measurements. Journal of Quantitative Spectroscopy and Radiative Transfer, 2018, 213, 228-240.	2.3	18

#	Article	IF	CITATIONS
55	The GEWEX Water Vapor Assessment archive of water vapour products from satellite observations and reanalyses. Earth System Science Data, 2018, 10, 1093-1117.	9.9	42
56	The ESA GOME-Evolution "Climate―water vapor product: a homogenized time series of H ₂ O columns from GOME, SCIAMACHY, and GOME-2. Earth System Science Data, 2018, 10, 449-468.	9.9	16
57	Volcanic SO ₂ plume height retrieval from UV sensors using a full-physics inverse learning machine algorithm. International Journal of Remote Sensing, 2017, 38, 1-27.	2.9	68
58	Sulfur dioxide retrievals from TROPOMI onboard Sentinel-5 Precursor: algorithm theoretical basis. Atmospheric Measurement Techniques, 2017, 10, 119-153.	3.1	130
59	OCRA radiometric cloud fractions for GOME-2 on MetOp-A/B. Atmospheric Measurement Techniques, 2016, 9, 2357-2379.	3.1	21
60	Overview of the O3M SAF GOME-2 operational atmospheric composition and UV radiation data products and data availability. Atmospheric Measurement Techniques, 2016, 9, 383-407.	3.1	44
61	Seven years of IASI ozone retrievals from FORLI: validation with independent total column and vertical profile measurements. Atmospheric Measurement Techniques, 2016, 9, 4327-4353.	3.1	50
62	Trends of tropical tropospheric ozone from 20 years of European satellite measurements and perspectives for the Sentinel-5 Precursor. Atmospheric Measurement Techniques, 2016, 9, 5037-5051.	3.1	38
63	Smart sampling and incremental function learning for very large high dimensional data. Neural Networks, 2016, 78, 75-87.	5.9	60
64	A stochastic cloud model for cloud and ozone retrievals from UV measurements. Journal of Quantitative Spectroscopy and Radiative Transfer, 2016, 184, 167-179.	2.3	12
65	Monitoring ozone in different spectral regimes from space and balloon (Sentinel-4/-5P, TELIS). , 2016, , .		2
66	Evaluating a new homogeneous total ozone climate data record from GOME/ERSâ€2, SCIAMACHY/Envisat, and GOMEâ€2/MetOpâ€A. Journal of Geophysical Research D: Atmospheres, 2015, 120, 12,296.	3.3	29
67	The GOME-type Total Ozone Essential Climate Variable (GTO-ECV) data record from the ESA Climate Change Initiative. Atmospheric Measurement Techniques, 2015, 8, 3923-3940.	3.1	23
68	Validation of GOME-2/MetOp-A total water vapour column using reference radiosonde data from the GRUAN network. Atmospheric Measurement Techniques, 2015, 8, 1135-1145.	3.1	19
69	Total column water vapour measurements from GOME-2 MetOp-A and MetOp-B. Atmospheric Measurement Techniques, 2015, 8, 1111-1133.	3.1	43
70	State of the Climate in 2014. Bulletin of the American Meteorological Society, 2015, 96, ES1-ES32.	3.3	78
71	Comparison of total water vapor column from GOME-2 on MetOp-A against ground-based GPS measurements at the Iberian Peninsula. Science of the Total Environment, 2015, 533, 317-328.	8.0	23
72	Tropical tropospheric ozone column retrieval for GOME-2. Atmospheric Measurement Techniques, 2014, 7, 2513-2530.	3.1	25

#	Article	IF	CITATIONS
73	Homogenized total ozone data records from the European sensors GOME/ERSâ€2, SCIAMACHY/Envisat, and GOMEâ€2/MetOpâ€A. Journal of Geophysical Research D: Atmospheres, 2014, 119, 1639-1662.	3.3	63
74	Comparison of profile total ozone from SBUV (v8.6) with GOME-type and ground-based total ozone for a 16-year period (1996 to 2011). Atmospheric Measurement Techniques, 2014, 7, 1681-1692.	3.1	17
75	GOME-2 total ozone columns from MetOp-A/MetOp-B and assimilation in the MACC system. Atmospheric Measurement Techniques, 2014, 7, 2937-2951.	3.1	41
76	Discrete ordinate method with matrix exponential for stochastic radiative transfer in broken clouds. Journal of Quantitative Spectroscopy and Radiative Transfer, 2014, 138, 1-16.	2.3	12
77	Acceleration of radiative transfer model calculations for the retrieval of trace gases under cloudy conditions. Journal of Quantitative Spectroscopy and Radiative Transfer, 2014, 135, 58-65.	2.3	8
78	Optical property dimensionality reduction techniques for accelerated radiative transfer performance: Application to remote sensing total ozone retrievals. Journal of Quantitative Spectroscopy and Radiative Transfer, 2014, 133, 128-135.	2.3	31
79	Multi-core-CPU and GPU-accelerated radiative transfer models based on the discrete ordinate method. Computer Physics Communications, 2014, 185, 3079-3089.	7.5	59
80	A new health check of the ozone layer at global and regional scales. Geophysical Research Letters, 2014, 41, 4363-4372.	4.0	18
81	Tropospheric ozone and nitrogen dioxide measurements in urban and rural regions as seen by IASI and GOMEâ€2. Journal of Geophysical Research D: Atmospheres, 2013, 118, 10,555.	3.3	41
82	Small-angle modification of the radiative transfer equation for a pseudo-spherical atmosphere. Journal of Quantitative Spectroscopy and Radiative Transfer, 2013, 114, 82-90.	2.3	7
83	Acceleration techniques for the discrete ordinate method. Journal of Quantitative Spectroscopy and Radiative Transfer, 2013, 114, 73-81.	2.3	27
84	Linearization of the Principal Component Analysis method for radiative transfer acceleration: Application to retrieval algorithms and sensitivity studies. Journal of Quantitative Spectroscopy and Radiative Transfer, 2013, 125, 1-17.	2.3	22
85	Geophysical validation and long-term consistency between GOME-2/MetOp-A total ozone column and measurements from the sensors GOME/ERS-2, SCIAMACHY/ENVISAT and OMI/Aura. Atmospheric Measurement Techniques, 2012, 5, 2169-2181.	3.1	45
86	Sixteen years of GOME/ERSâ€2 total ozone data: The new directâ€fitting GOME Data Processor (GDP) version 5—Algorithm description. Journal of Geophysical Research, 2012, 117, .	3.3	47
87	Multi-sensor data merging with stacked neural networks for the creation of satellite long-term climate data records. Eurasip Journal on Advances in Signal Processing, 2012, 2012, .	1.7	20
88	Volcanic SO ₂ , BrO and plume height estimations using GOMEâ€2 satellite measurements during the eruption of Eyjafjallajökull in May 2010. Journal of Geophysical Research, 2012, 117, .	3.3	85
89	Influence of cloud properties on satellite total ozone observations. Journal of Geophysical Research, 2011, 116, .	3.3	24
90	Long-term trends of total ozone column over the Iberian Peninsula for the period 1979–2008. Atmospheric Environment, 2011, 45, 6283-6290.	4.1	12

#	Article	IF	CITATIONS
91	Validation of the MetOp-A total ozone data from GOME-2 and IASI using reference ground-based measurements at the Iberian Peninsula. Remote Sensing of Environment, 2011, 115, 1380-1386.	11.0	42
92	Space-based measurements of air quality during the World Expo 2010 in Shanghai. Environmental Research Letters, 2011, 6, 044004.	5.2	58
93	Operational total and tropospheric NO ₂ column retrieval for GOME-2. Atmospheric Measurement Techniques, 2011, 4, 1491-1514.	3.1	114
94	Constrained regularization methods for ozone profile retrieval from UV/VIS nadir spectrometers. Journal of Quantitative Spectroscopy and Radiative Transfer, 2010, 111, 907-916.	2.3	1
95	Influence of turbidity and clouds on satellite total ozone data over Madrid (Spain). Annales Geophysicae, 2010, 28, 1441-1448.	1.6	1
96	The GODFIT algorithm: a direct fitting approach to improve the accuracy of total ozone measurements from GOME. International Journal of Remote Sensing, 2010, 31, 543-550.	2.9	34
97	Comparison of GOME-2/MetOp total ozone data with Brewer spectroradiometer data over the Iberian Peninsula. Annales Geophysicae, 2009, 27, 1377-1386.	1.6	41
98	Satellite Monitoring of Volcanic Sulfur Dioxide Emissions for Early Warning of Volcanic Hazards. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2009, 2, 196-206.	4.9	67
99	Introduction to the Issue on Fostering Applications of Earth Observations of the Atmosphere. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2009, 2, 142-143.	4.9	0
100	The Geospatial Service Infrastructure for DLR's National Remote Sensing Data Library. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2009, 2, 260-269.	4.9	14
101	Introduction to the Issue on Fostering Applications of Earth Observations of the Atmosphere—Part II. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2009, 2, 270-270.	4.9	0
102	Spectral surface albedo derived from GOME-2/Metop measurements. Proceedings of SPIE, 2009, , .	0.8	1
103	Operational Monitoring of the Antarctic Ozone Hole: Transition from GOME and SCIAMACHY to GOME-2. , 2009, , 213-236.		0
104	Long-term analysis of GOME in-flight calibration parameters and instrument degradation. Applied Optics, 2008, 47, 4749.	2.1	10
105	Climatology databases using neural networks: Application to global temperature profiles. , 2008, , .		0
106	Comparison of GOME total ozone data with ground data from the Spanish Brewer spectroradiometers. Annales Geophysicae, 2008, 26, 401-412.	1.6	20
107	Ten years of GOME/ERS2 total ozone data—The new GOME data processor (GDP) version 4: 2. Ground-based validation and comparisons with TOMS V7/V8. Journal of Geophysical Research, 2007, 112,	3.3	61
108	Ten years of GOME/ERS-2 total ozone data—The new GOME data processor (GDP) version 4: 1. Algorithm description. Journal of Geophysical Research, 2006, 111, .	3.3	121

#	Article	IF	CITATIONS
109	Applications of neural network methods to the processing of earth observation satellite data. Neural Networks, 2006, 19, 168-177.	5.9	36
110	Intercomparison of cloud top altitudes as derived using GOME and ATSR-2 instruments onboard ERS-2. Remote Sensing of Environment, 2006, 102, 186-193.	11.0	18
111	GOME level 1-to-2 data processor version 30: a major upgrade of the GOME/ERS-2 total ozone retrieval algorithm. Applied Optics, 2005, 44, 7196.	2.1	18
112	Ozone profile retrieval from Global Ozone Monitoring Experiment (GOME) data using a neural network approach (Neural Network Ozone Retrieval System (NNORSY)). Journal of Geophysical Research, 2003, 108, .	3.3	57
113	Comparison of total ozone from the satellite instruments GOME and TOMS with measurements from the Dobson network 1996–2000. Atmospheric Chemistry and Physics, 2003, 3, 1409-1419.	4.9	59
114	A new cloud recognition algorithm for optical sensors. , 1998, , .		16
115	<title>GOME data processor: the first operational DOAS-based algorithm applied to data from a spaceborne sensor</title> . , 1997, , .		0
116	<title>Ground segment for ERS-2 GOME sensor at the German D-PAF</title> . , 1996, , .		0
117	Satellite-based detection of volcanic sulphur dioxide from recent eruptions in Central and South America. Advances in Geosciences, 0, 14, 35-40.	12.0	31
118	The 1997 El Niño impact on clouds, water vapour, aerosols and reactive trace gases in the troposphere, as measured by the Global Ozone Monitoring Experiment. Advances in Geosciences, 0, 6, 267-272.	12.0	6
119	FULL-PHYSICS INVERSE LEARNING MACHINE FOR SATELLITE REMOTE SENSING OF OZONE PROFILE SHAPES AND TROPOSPHERIC COLUMNS. International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences - ISPRS Archives, 0, XLII-3, 1995-1998.	0.2	0