
Anthony Underwood

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6485631/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Hospital admission and emergency care attendance risk for SARS-CoV-2 delta (B.1.617.2) compared with alpha (B.1.1.7) variants of concern: a cohort study. Lancet Infectious Diseases, The, 2022, 22, 35-42.	9.1	612
2	Circulation of Third-Generation Cephalosporin Resistant <i>Salmonella</i> Typhi in Mumbai, India. Clinical Infectious Diseases, 2022, 74, 2234-2237.	5.8	14
3	Train-the-Trainer as an Effective Approach to Building Global Networks of Experts in Genomic Surveillance of Antimicrobial Resistance (AMR). Clinical Infectious Diseases, 2021, 73, S283-S289.	5.8	8
4	Clones and Clusters of Antimicrobial-Resistant <i>Klebsiella</i> From Southwestern Nigeria. Clinical Infectious Diseases, 2021, 73, S308-S315.	5.8	26
5	Good Financial Grant Practice: A Tool for Developing and Demonstrating Institutional Financial and Grant Management Capacity in Global Health. Clinical Infectious Diseases, 2021, 73, S275-S282.	5.8	3
6	Complexity of Genomic Epidemiology of Carbapenem-Resistant <i>Klebsiella pneumoniae</i> Isolates in Colombia Urges the Reinforcement of Whole Genome Sequencing-Based Surveillance Programs. Clinical Infectious Diseases, 2021, 73, S290-S299.	5.8	22
7	Rapid Genomic Characterization and Global Surveillance of <i>Klebsiella</i> Using Pathogenwatch. Clinical Infectious Diseases, 2021, 73, S325-S335.	5.8	47
8	Integrating Scalable Genome Sequencing Into Microbiology Laboratories for Routine Antimicrobial Resistance Surveillance. Clinical Infectious Diseases, 2021, 73, S258-S266.	5.8	14
9	Genome Sequencing Identifies Previously Unrecognized <i>Klebsiella pneumoniae</i> Outbreaks in Neonatal Intensive Care Units in the Philippines. Clinical Infectious Diseases, 2021, 73, S316-S324.	5.8	12
10	Implementing Whole-Genome Sequencing for Ongoing Surveillance of Antimicrobial Resistance: Exemplifying Insights Into <i>Klebsiella pneumoniae</i> . Clinical Infectious Diseases, 2021, 73, S255-S257.	5.8	7
11	A community-driven resource for genomic epidemiology and antimicrobial resistance prediction of Neisseria gonorrhoeae at Pathogenwatch. Genome Medicine, 2021, 13, 61.	8.2	63
12	A global resource for genomic predictions of antimicrobial resistance and surveillance of Salmonella Typhi at pathogenwatch. Nature Communications, 2021, 12, 2879.	12.8	56
13	CLIMB-COVID: continuous integration supporting decentralised sequencing for SARS-CoV-2 genomic surveillance. Genome Biology, 2021, 22, 196.	8.8	53
14	Assignment of epidemiological lineages in an emerging pandemic using the pangolin tool. Virus Evolution, 2021, 7, veab064.	4.9	774
15	OUP accepted manuscript. Clinical Infectious Diseases, 2021, 73, S267-S274.	5.8	12
16	High-Resolution Genomic Profiling of Carbapenem-Resistant <i>Klebsiella pneumoniae</i> Isolates: A Multicentric Retrospective Indian Study. Clinical Infectious Diseases, 2021, 73, S300-S307.	5.8	30
17	Sustained transmission of high-level azithromycin-resistant Neisseria gonorrhoeae in England: an observational study. Lancet Infectious Diseases, The, 2018, 18, 573-581.	9.1	99
18	SnapperDB: a database solution for routine sequencing analysis of bacterial isolates. Bioinformatics, 2018, 34, 3028-3029.	4.1	164

ANTHONY UNDERWOOD

#	Article	IF	CITATIONS
19	Final report of ENGAGE ―Establishing Next Generation sequencing Ability for Genomic analysis in Europe. EFSA Supporting Publications, 2018, 15, 1431E.	0.7	14
20	Enhanced nasopharyngeal infection and shedding associated with an epidemic lineage of <i>emm</i> 3 group A <i>Streptococcus</i> . Virulence, 2017, 8, 1390-1400.	4.4	17
21	Genome analysis following a national increase in Scarlet Fever in England 2014. BMC Genomics, 2017, 18, 224.	2.8	65
22	BugMat and FindNeighbour: command line and server applications for investigating bacterial relatedness. BMC Bioinformatics, 2017, 18, 477.	2.6	16
23	Integration of Genomic and Other Epidemiologic Data to Investigate and Control a Cross-Institutional Outbreak of <i>Streptococcus pyogenes</i> . Emerging Infectious Diseases, 2016, 22, 973-980.	4.3	18
24	Multiple major disease-associated clones of <i>Legionella pneumophila</i> have emerged recently and independently. Genome Research, 2016, 26, 1555-1564.	5.5	72
25	Evaluation of an Optimal Epidemiological Typing Scheme for Legionella pneumophila with Whole-Genome Sequence Data Using Validation Guidelines. Journal of Clinical Microbiology, 2016, 54, 2135-2148.	3.9	46
26	Emergence of a novel lineage containing a prophage in emm/M3 group A Streptococcus associated with upsurge in invasive disease in the UK. Microbial Genomics, 2016, 2, e000059.	2.0	29
27	Genomic determination of minimum multi-locus sequence typing schemas to represent the genomic phylogeny of Mycoplasma hominis. BMC Genomics, 2016, 17, 964.	2.8	10
28	MOST: a modified MLST typing tool based on short read sequencing. PeerJ, 2016, 4, e2308.	2.0	105
29	Whole-Genome Sequencing and Epidemiological Analysis Do Not Provide Evidence for Cross-transmission of Mycobacterium abscessus in a Cohort of Pediatric Cystic Fibrosis Patients. Clinical Infectious Diseases, 2015, 60, 1007-16.	5.8	81
30	High-Resolution Analysis by Whole-Genome Sequencing of an International Lineage (Sequence Type 111) of Pseudomonas aeruginosa Associated with Metallo-Carbapenemases in the United Kingdom. Journal of Clinical Microbiology, 2015, 53, 2622-2631.	3.9	50
31	Whole-Genome Sequencing for National Surveillance of Shiga Toxin–Producing <i>Escherichia coli</i> O157. Clinical Infectious Diseases, 2015, 61, 305-312.	5.8	181
32	Metaproteomics Analysis Reveals the Adaptation Process for the Chicken Gut Microbiota. Applied and Environmental Microbiology, 2014, 80, 478-485.	3.1	65
33	An Investigation of the Diversity of Strains of Enteroaggregative Escherichia coli Isolated from Cases Associated with a Large Multi-Pathogen Foodborne Outbreak in the UK. PLoS ONE, 2014, 9, e98103.	2.5	41
34	Enteroaggregative Escherichia coli Have Evolved Independently as Distinct Complexes within the E. coli Population with Varying Ability to Cause Disease. PLoS ONE, 2014, 9, e112967.	2.5	17
35	Clusters of genetically similar isolates of Pseudomonas aeruginosa from multiple hospitals in the UK. Journal of Medical Microbiology, 2013, 62, 988-1000.	1.8	47
36	snp-search: simple processing, manipulation and searching of SNPs from high-throughput sequencing. BMC Bioinformatics, 2013, 14, 326.	2.6	5

ANTHONY UNDERWOOD

#	Article	IF	CITATIONS
37	Evolutionary Dynamics of Local Pandemic H1N1/2009 Influenza Virus Lineages Revealed by Whole-Genome Analysis. Journal of Virology, 2012, 86, 11-18.	3.4	101
38	Non-culture detection of Streptococcus agalactiae (Lancefield group B Streptococcus) in clinical samples by real-time PCR. Journal of Medical Microbiology, 2012, 61, 1086-1090.	1.8	18
39	Multiple-locus variable-number tandem-repeat analysis of Streptococcus pneumoniae and comparison with multiple loci sequence typing. BMC Microbiology, 2012, 12, 241.	3.3	13
40	Evolutionary Pathways of the Pandemic Influenza A (H1N1) 2009 in the UK. PLoS ONE, 2011, 6, e23779.	2.5	34
41	Whole-genome comparison of two Acinetobacter baumannii isolates from a single patient, where resistance developed during tigecycline therapy. Journal of Antimicrobial Chemotherapy, 2011, 66, 1499-1503.	3.0	96
42	Call for a Quality Standard for Sequence-Based Assays in Clinical Microbiology: Necessity for Quality Assessment of Sequences Used in Microbial Identification and Typing. Journal of Clinical Microbiology, 2011, 49, 23-26.	3.9	20
43	The Impact of Pandemic Influenza H1N1 on Health-Related Quality of Life: A Prospective Population-Based Study. PLoS ONE, 2011, 6, e17030.	2.5	75
44	Complete Nucleotide Sequences of Plasmids pEK204, pEK499, and pEK516, Encoding CTX-M Enzymes in Three Major <i>Escherichia coli</i> Lineages from the United Kingdom, All Belonging to the International O25:H4-ST131 Clone. Antimicrobial Agents and Chemotherapy, 2009, 53, 4472-4482.	3.2	256
45	Mathematical Modelling of Mycobacterium tuberculosis VNTR Loci Estimates a Very Slow Mutation Rate for the Repeats. Journal of Molecular Evolution, 2008, 66, 565-574.	1.8	30
46	VNTRDB: a bacterial variable number tandem repeat locus database. Nucleic Acids Research, 2007, 35, D416-D421.	14.5	33
47	Evolutionary clues from comparative analysis of Mycobacterium tuberculosis variable-number tandem repeat sequences within genetic familiesâ~†. Infection, Genetics and Evolution, 2007, 7, 239-246.	2.3	5
48	Evolution of short sequence repeats in Mycobacterium tuberculosis. FEMS Microbiology Letters, 2006, 256, 340-346.	1.8	23
49	A virulence-associated gene microarray: a tool for investigation of the evolution and pathogenic potential of Staphylococcus aureus. Microbiology (United Kingdom), 2004, 150, 3763-3771.	1.8	40
50	The Secreted Larval Acidic Proteins (SLAPs) of Onchocerca spp. are encoded by orthologues of the alt gene family of Brugia malayi and have host protective potential. Molecular and Biochemical Parasitology, 2004, 134, 213-224.	1.1	36
51	Identification of a molecular marker for the Y chromosome of Brugia malayi. Molecular and Biochemical Parasitology, 1999, 99, 1-10.	1.1	20