Richard J Quigg

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6485298/publications.pdf

Version: 2024-02-01

361413 395702 1,399 36 20 33 citations h-index g-index papers 36 36 36 1758 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	C5a promotes development of experimental lupus nephritis which can be blocked with a specific receptor antagonist. European Journal of Immunology, 2005, 35, 2496-2506.	2.9	125
2	Complement Factor H Deficiency Accelerates Development of Lupus Nephritis. Journal of the American Society of Nephrology: JASN, 2011, 22, 285-295.	6.1	114
3	Transgenic Expression of a Soluble Complement Inhibitor Protects Against Renal Disease and Promotes Survival in MRL/ <i> > Mice. Journal of Immunology, 2002, 168, 3601-3607.</i>	0.8	108
4	Advanced glycation end products dietary restriction effects on bacterial gut microbiota in peritoneal dialysis patients; a randomized open label controlled trial. PLoS ONE, 2017, 12, e0184789.	2.5	107
5	C5a alters bloodâ€brain barrier integrity in experimental lupus. FASEB Journal, 2010, 24, 1682-1688.	0.5	101
6	Signaling through Up-Regulated C3a Receptor Is Key to the Development of Experimental Lupus Nephritis. Journal of Immunology, 2005, 175, 1947-1955.	0.8	96
7	Administration of a Soluble Recombinant Complement C3 Inhibitor Protects Against Renal Disease in MRL/lpr Mice. Journal of the American Society of Nephrology: JASN, 2003, 14, 670-679.	6.1	89
8	Glomerular Diseases Associated With Hepatitis B and C. Advances in Chronic Kidney Disease, 2015, 22, 343-351.	1.4	76
9	Complement in Lupus Nephritis: New Perspectives. Kidney Diseases (Basel, Switzerland), 2015, 1, 91-99.	2.5	72
10	C5a alters blood–brain barrier integrity in a human <i>inÂvitro</i> model of systemic lupus erythematosus. Immunology, 2015, 146, 130-143.	4.4	56
11	Excessive Matrix Accumulation in the Kidneys of MRL/lpr Lupus Mice Is Dependent on Complement Activation. Journal of the American Society of Nephrology: JASN, 2003, 14, 2516-2525.	6.1	51
12	Unrestricted C3 Activation Occurs in Crry-Deficient Kidneys and Rapidly Leads to Chronic Renal Failure. Journal of the American Society of Nephrology: JASN, 2007, 18, 811-822.	6.1	51
13	Successful cyclophosphamide treatment of cryoglobulinemic membranoproliferative glomerulonephritis associated with hepatitis C virus infection. American Journal of Kidney Diseases, 1995, 25, 798-800.	1.9	47
14	Chronic kidney disease, uremic milieu, and its effects on gut bacterial microbiota dysbiosis. American Journal of Physiology - Renal Physiology, 2018, 315, F487-F502.	2.7	41
15	C5a induces caspaseâ€dependent apoptosis in brain vascular endothelial cells in experimental lupus. Immunology, 2016, 148, 407-419.	4.4	35
16	CR1/CR2 Deficiency Alters IgG3 Autoantibody Production and IgA Glomerular Deposition in the MRL/lpr Model of SLE. Autoimmunity, 2004, 37, 111-123.	2.6	28
17	Loss of diacylglycerol kinase epsilon in mice causes endothelial distress and impairs glomerular Cox-2 and PGE2 production. American Journal of Physiology - Renal Physiology, 2016, 310, F895-F908.	2.7	24
18	Lupus: The microbiome angle. Immunobiology, 2018, 223, 460-465.	1.9	23

#	Article	IF	CITATIONS
19	CD11b is protective in complement-mediated immune complex glomerulonephritis. Kidney International, 2015, 87, 930-939.	5.2	22
20	Overexpression of complement inhibitor Crry does not prevent cryoglobulin-associated membranoproliferative glomerulonephritis. Kidney International, 2004, 65, 1214-1223.	5.2	21
21	The C5a receptor has a key role in immune complex glomerulonephritis in complement factor H–deficient mice. Kidney International, 2012, 82, 961-968.	5.2	19
22	Improving Clinical Trials for Anticomplement Therapies in Complement-Mediated Glomerulopathies: Report of a Scientific Workshop Sponsored by the National Kidney Foundation. American Journal of Kidney Diseases, 2022, 79, 570-581.	1.9	15
23	Contrasting Effects of Systemic Monocyte/Macrophage and CD4 ⁺ T Cell Depletion in a Reversible Ureteral Obstruction Mouse Model of Chronic Kidney Disease. Clinical and Developmental Immunology, 2013, 2013, 1-7.	3.3	12
24	Local complement factor H protects kidney endothelial cell structure and function. Kidney International, 2021, 100, 824-836.	5.2	12
25	Complement activation in the tubulointerstitium: AKI, CKD, and in between. Kidney International, 2014, 86, 663-666.	5.2	11
26	Taming hemodialysis-induced inflammation: Are complement C3 inhibitors a viable option?. Clinical Immunology, 2019, 198, 102-105.	3.2	11
27	Abrogation of immune complex glomerulonephritis by native carboxypeptidase and pharmacological antagonism of the C5a receptor. Cellular and Molecular Immunology, 2016, 13, 651-657.	10.5	6
28	Immunoregulation of Inflammation in Chronic Kidney Disease. Journal of Immunology Research, 2014, 2014, 1-2.	2.2	5
29	Reninâ€Angiotensinâ€Aldosterone System Blockers in Elderly Adults with Chronic Kidney Disease without Diabetes Mellitus or Proteinuria. Journal of the American Geriatrics Society, 2015, 63, 2478-2484.	2.6	5
30	Absence of complement factor H alters bone architecture and dynamics. Immunobiology, 2018, 223, 761-771.	1.9	5
31	Unconjugated p-cresol activates macrophage macropinocytosis leading to increased LDL uptake. JCl Insight, 2021, 6, .	5.0	5
32	Absence of complement factor H reduces physical performance in C57BL6 mice. Immunobiology, 2020, 225, 152003.	1.9	2
33	The complement system in lupus nephritis. F1000Research, 0, 4, 145.	1.6	2
34	Effects of conventional immunosuppressive therapy on functional and pathological features of CNS lupus in NZB/W mice. F1000Research, 0, 4, 163.	1.6	1
35	Macrophage Depletion Reduces Disease Pathology in Factor H-Dependent Immune Complex-Mediated Glomerulonephritis. Journal of Immunology Research, 2022, 2022, 1-8.	2.2	1
36	Muscle, myeloid cells, and complement: a complex interaction. Cellular and Molecular Immunology, 2018, 15, 992-993.	10.5	0