
Philippe G Schyns

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6483387/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Facial expressions elicit multiplexed perceptions of emotion categories and dimensions. Current Biology, 2022, 32, 200-209.e6.	3.9	13
2	Different computations over the same inputs produce selective behavior in algorithmic brain networks. ELife, 2022, 11, .	6.0	6
3	Within-participant statistics for cognitive science. Trends in Cognitive Sciences, 2022, 26, 626-630.	7.8	28
4	Multidirectional strain sensor using multimaterial 3D printing. , 2022, , .		3
5	Modeling individual preferences reveals that face beauty is not universally perceived across cultures. Current Biology, 2021, 31, 2243-2252.e6.	3.9	19
6	Brain networks dynamically represent and transfer behaviorally-relevant face and object features but quickly reduce them when they are behaviorally-irrelevant. Journal of Vision, 2021, 21, 2178.	0.3	0
7	Facial expressions of emotion include iconic signals of rejection and acceptance. Journal of Vision, 2021, 21, 2932.	0.3	1
8	Bayesian inference of population prevalence. Journal of Vision, 2021, 21, 1970.	0.3	0
9	Grounding deep neural network predictions of human categorization behavior in understandable functional features: The case of face identity. Patterns, 2021, 2, 100348.	5.9	18
10	Facial Expressions Reveal Cross-Cultural Variance in Emotion Signaling. Journal of Vision, 2021, 21, 2500.	0.3	3
11	Dynamic representation of information prediction in the brain. Journal of Vision, 2021, 21, 2247.	0.3	0
12	Modelling individual preferences reveals that face beauty is not universally perceived across cultures. Journal of Vision, 2021, 21, 2739.	0.3	0
13	Semantic Decoding of Affective Face Signals in the Brain is Temporally Distinct. Journal of Vision, 2021, 21, 2589.	0.3	1
14	Brain networks dynamically resolve basic algorithmic functions with task-specific strategies. Journal of Vision, 2021, 21, 2020.	0.3	0
15	Bayesian inference of population prevalence. ELife, 2021, 10, .	6.0	27
16	Social Trait Facial Expressions Comprise Latent Affective Facial Signals. Journal of Vision, 2021, 21, 1988.	0.3	0
17	Emotion perception in habitual players of action video games Emotion, 2021, 21, 1324-1339.	1.8	12
18	Healthy aging delays the neural processing of face features relevant for behavior by 40 ms. Human Brain Mapping, 2020, 41, 1212-1225.	3.6	6

#	Article	IF	CITATIONS
19	Vision: Face-Centered Representations in the Brain. Current Biology, 2020, 30, R1277-R1278.	3.9	Ο
20	Revealing the information contents of memory within the stimulus information representation framework. Philosophical Transactions of the Royal Society B: Biological Sciences, 2020, 375, 20190705.	4.0	18
21	Social trait perception is structured by a latent composition of 3D face features. Journal of Vision, 2020, 20, 1365.	0.3	2
22	Psychologically Valid Social Face Features for Virtual Agents. , 2020, , .		1
23	A Generative Model of Cultural Face Attractiveness. , 2020, , .		0
24	Representation of information prediction in the brain. Journal of Vision, 2020, 20, 1044.	0.3	0
25	Face movements temporally decouple the transmission of emotion category and intensity information. Journal of Vision, 2020, 20, 686.	0.3	0
26	The effects of familiarisation on information sampling and task performance. Journal of Vision, 2020, 20, 1775.	0.3	0
27	Spatiotemporal dynamics of a nonlinear algorithmic primitive (XOR) in brain networks. Journal of Vision, 2020, 20, 721.	0.3	0
28	Emotion Categories are Represented by a 2-Dimensional Valence-Arousal Space. Journal of Vision, 2020, 20, 1224.	0.3	0
29	Equipping social robots with culturally-sensitive facial expressions of emotion using data-driven methods. , 2019, , .		19
30	Modelling face memory reveals task-generalizable representations. Nature Human Behaviour, 2019, 3, 817-826.	12.0	26
31	Dynamic Construction of Reduced Representations in the Brain for Perceptual Decision Behavior. Current Biology, 2019, 29, 319-326.e4.	3.9	40
32	Object Recognition: Complexity of Recognition Strategies. Current Biology, 2018, 28, R313-R315.	3.9	3
33	Using Psychophysical Methods to Understand Mechanisms of Face Identification in a Deep Neural Network. , 2018, , .		5
34	Distinct facial expressions represent pain and pleasure across cultures. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, E10013-E10021.	7.1	77
35	Representational interactions during audiovisual speech entrainment: Redundancy in left posterior superior temporal gyrus and synergy in left motor cortex. PLoS Biology, 2018, 16, e2006558.	5.6	54
36	Reverse Engineering Psychologically Valid Facial Expressions of Emotion into Social Robots. , 2018, , .		24

#	Article	IF	CITATIONS
37	Automaticity of scene understanding may not extend to highly associated actions or objects. Journal of Vision, 2018, 18, 381.	0.3	0
38	Transfer of Diagnostic Features from Occipital Cortex to right Fusiform Gyrus for Perceptual Decisions. Journal of Vision, 2018, 18, 736.	0.3	0
39	Dynamic Construction of Feature-Based Representations for Perceptual Decisions in the Occipito-Ventral Pathway. Journal of Vision, 2018, 18, 735.	0.3	Ο
40	Understanding Information Processing Mechanisms for Face Categorizations in Deep Neural Networks. Journal of Vision, 2018, 18, 155.	0.3	0
41	Task-Dependent Information Compression in Face, Object and Scene Categorization. Journal of Vision, 2018, 18, 325.	0.3	0
42	Deep Neural Network Identifies Dynamic Facial Action Units from Image Sequences. Journal of Vision, 2018, 18, 606.	0.3	0
43	Emotion-specific categorization-relevant information reconstructed from Right and Left Fusiform Gyri. Journal of Vision, 2018, 18, 914.	0.3	0
44	Toward a Social Psychophysics of Face Communication. Annual Review of Psychology, 2017, 68, 269-297.	17.7	122
45	Functional Smiles: Tools for Love, Sympathy, and War. Psychological Science, 2017, 28, 1259-1270.	3.3	117
46	A statistical framework for neuroimaging data analysis based on mutual information estimated via a gaussian copula. Human Brain Mapping, 2017, 38, 1541-1573.	3.6	225
47	Personal familiarity enhances sensitivity to horizontal structure during processing of face identity. Journal of Vision, 2017, 17, 5.	0.3	13
48	Mapping Dynamic Conversational Facial Expressions Across Cultures. Journal of Vision, 2017, 17, 834.	0.3	2
49	Contributions of local speech encoding and functional connectivity to audio-visual speech perception. ELife, 2017, 6, .	6.0	71
50	Objective Analysis of the Subjective Information Contents of Memory of Familiar Faces. Journal of Vision, 2017, 17, 916.	0.3	0
51	Dynamic Integration of Visual and Categorization Relevant Information in the Ventral Stream. Journal of Vision, 2017, 17, 1264.	0.3	0
52	Using Psychophysical Methods to Study Face Identification in a Deep Neural Network. Journal of Vision, 2017, 17, 248.	0.3	0
53	Space-by-time manifold representation of dynamic facial expressions for emotion categorization. Journal of Vision, 2016, 16, 14.	0.3	24
54	Tracing the Flow of Perceptual Features in an Algorithmic Brain Network. Scientific Reports, 2016, 5, 17681.	3.3	47

#	Article	IF	CITATIONS
55	Stimulus features coded by single neurons of a macaque body category selective patch. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, E2450-9.	7.1	26
56	Space-by-time decomposition for single-trial decoding of M/EEG activity. NeuroImage, 2016, 133, 504-515.	4.2	18
57	Four not six: Revealing culturally common facial expressions of emotion Journal of Experimental Psychology: General, 2016, 145, 708-730.	2.1	158
58	The Deceptively Simple N170 Reflects Network Information Processing Mechanisms Involving Visual Feature Coding and Transfer Across Hemispheres. Cerebral Cortex, 2016, 26, 4123-4135.	2.9	45
59	Facial Expressions of Pain and Pleasure are Highly Distinct. Journal of Vision, 2016, 16, 210.	0.3	5
60	Personal familiarity enhances sensitivity to horizontal structure during face identification. Journal of Vision, 2016, 16, 912.	0.3	0
61	Visualizing the Information Content of 3D Face Memory in Individual Participants. Journal of Vision, 2016, 16, 211.	0.3	Ο
62	Facial Expression Aftereffect Revealed by Adaption to Emotion-Invisible Dynamic Bubbled Faces. PLoS ONE, 2015, 10, e0145877.	2.5	12
63	Reconstructing dynamic mental models of facial expressions in prosopagnosia reveals distinct representations for identity and expression. Cortex, 2015, 65, 50-64.	2.4	41
64	Frontal Top-Down Signals Increase Coupling of Auditory Low-Frequency Oscillations to Continuous Speech in Human Listeners. Current Biology, 2015, 25, 1649-1653.	3.9	309
65	The Human Face as a Dynamic Tool for Social Communication. Current Biology, 2015, 25, R621-R634.	3.9	219
66	A framework for automatic and perceptually valid facial expression generation. Multimedia Tools and Applications, 2015, 74, 9427-9447.	3.9	11
67	The N170 is mostly sensitive to pixels in the contralateral eye area. Journal of Vision, 2015, 15, 687.	0.3	1
68	The Face is the Mirror of the Cultural Mind. Journal of Vision, 2015, 15, 928.	0.3	11
69	Bubble-Warp: a New Approach to the Depiction of High-Level Mental Representation. Journal of Vision, 2015, 15, 420.	0.3	0
70	Face inversion does not affect the information content coded during the N170. Journal of Vision, 2015, 15, 155.	0.3	0
71	Reconstructing a representational space of learned faces. Journal of Vision, 2015, 15, 700.	0.3	0
72	Processing of the same face features is delayed by 40 ms, weaker and differentially coded across hemispheres in healthy ageing. Journal of Vision, 2015, 15, 688.	0.3	0

#	Article	IF	CITATIONS
73	The deceptively simple N170 hides a complex diagnostic coding mechanism involving visual feature transfer across hemispheres Journal of Vision, 2015, 15, 749.	0.3	Ο
74	Eye coding mechanisms in early human face event-related potentials. Journal of Vision, 2014, 14, 7-7.	0.3	40
75	With Age Comes Representational Wisdom in Social Signals. Current Biology, 2014, 24, 2792-2796.	3.9	23
76	Beyond Gist. Psychological Science, 2014, 25, 1087-1097.	3.3	27
77	Facial Movements Strategically Camouflage Involuntary Social Signals of Face Morphology. Psychological Science, 2014, 25, 1079-1086.	3.3	46
78	Dynamic Facial Expressions of Emotion Transmit an Evolving Hierarchy of Signals over Time. Current Biology, 2014, 24, 187-192.	3.9	345
79	Decoding face categories in diagnostic subregions of primary visual cortex. European Journal of Neuroscience, 2013, 37, 1130-1139.	2.6	35
80	Speech Rhythms and Multiplexed Oscillatory Sensory Coding in the Human Brain. PLoS Biology, 2013, 11, e1001752.	5.6	502
81	Reply to Sauter and Eisner: Differences outweigh commonalities in the communication of emotions across human cultures. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, E181-2.	7.1	3
82	Speech Rhythms and Multiplexed Oscillatory Sensory Coding in the Human Brain. PLoS Biology, 2013, 11, e1001752.	5.6	5
83	Internal representations reveal cultural diversity in expectations of facial expressions of emotion Journal of Experimental Psychology: General, 2012, 141, 19-25.	2.1	195
84	Facial expressions of emotion are not culturally universal. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 7241-7244.	7.1	597
85	Causal implication by rhythmic transcranial magnetic stimulation of alpha frequency in featureâ€based local vs. global attention. European Journal of Neuroscience, 2012, 35, 968-974.	2.6	71
86	Perception-driven facial expression synthesis. Computers and Graphics, 2012, 36, 152-162.	2.5	100
87	Measuring Internal Representations from Behavioral and Brain Data. Current Biology, 2012, 22, 191-196.	3.9	76
88	Cracking the Code of Oscillatory Activity. PLoS Biology, 2011, 9, e1001064.	5.6	126
89	Visual Object Categorization in the Brain: What Can We Really Learn from ERP Peaks?. Frontiers in Human Neuroscience, 2011, 5, 156.	2.0	12
90	Entrainment of Perceptually Relevant Brain Oscillations by Non-Invasive Rhythmic Stimulation of the Human Brain. Frontiers in Psychology, 2011, 2, 170.	2.1	451

#	Article	IF	CITATIONS
91	Efficient bubbles for visual categorization tasks. Vision Research, 2011, 51, 1318-1323.	1.4	12
92	Rhythmic TMS over Parietal Cortex Links Distinct Brain Frequencies to Global versus Local Visual Processing. Current Biology, 2011, 21, 334-337.	3.9	156
93	Rhythmic TMS Causes Local Entrainment of Natural Oscillatory Signatures. Current Biology, 2011, 21, 1176-1185.	3.9	462
94	Grand challenges in perception science: modeling the future. Frontiers in Psychology, 2010, 1, 10.	2.1	9
95	Look who's talking: pre-verbal infants' perception of face-to-face and back-to-back social interactions. Frontiers in Psychology, 2010, 1, 159.	2.1	26
96	Smile Through Your Fear and Sadness. Psychological Science, 2009, 20, 1202-1208.	3.3	128
97	Cultural Confusions Show that Facial Expressions Are Not Universal. Current Biology, 2009, 19, 1543-1548.	3.9	402
98	Information processing algorithms in the brain. Trends in Cognitive Sciences, 2009, 13, 20-26.	7.8	50
99	Dynamics of Trimming the Content of Face Representations for Categorization in the Brain. PLoS Computational Biology, 2009, 5, e1000561.	3.2	42
100	Transmission of Facial Expressions of Emotion Co-Evolved with Their Efficient Decoding in the Brain: Behavioral and Brain Evidence. PLoS ONE, 2009, 4, e5625.	2.5	101
101	Classification images reveal the information sensitivity of brain voxels in fMRI. NeuroImage, 2008, 40, 1643-1654.	4.2	19
102	Inverse mapping the neuronal correlates of facial expression processing. , 2008, , .		0
103	Specific, selective or preferential: Comments on category specificity in neuroimaging. NeuroImage, 2007, 35, 991-997.	4.2	35
104	From a face to its category via a few information processing states in the brain. Neurolmage, 2007, 37, 974-984.	4.2	37
105	Controlling interstimulus perceptual variance does not abolish N170 face sensitivity. Nature Neuroscience, 2007, 10, 801-802.	14.8	77
106	Nonaccidental Properties Underlie Shape Recognition in Mammalian and Nonmammalian Vision. Current Biology, 2007, 17, 336-340.	3.9	54
107	Dynamics of Visual Information Integration in the Brain for Categorizing Facial Expressions. Current Biology, 2007, 17, 1580-1585.	3.9	226
108	The interplay between perceptual organization and categorization in the representation of complex visual patterns by young infants. Journal of Experimental Child Psychology, 2006, 95, 117-127.	1.4	31

#	Article	IF	CITATIONS
109	Channel surfing in the visual brain. Trends in Cognitive Sciences, 2006, 10, 538-545.	7.8	128
110	Retinotopic sensitisation to spatial scale: Evidence for flexible spatial frequency processing in scene perception. Vision Research, 2006, 46, 1108-1119.	1.4	16
111	Early selection of diagnostic facial information in the human visual cortex. Vision Research, 2006, 46, 800-813.	1.4	28
112	Using "Bubbles―with babies: A new technique for investigating the informational basis of infant perception. , 2006, 29, 471-475.		16
113	Is high-spatial frequency information used in the early stages of face detection?. Brain Research, 2006, 1117, 154-161.	2.2	75
114	Perceptual moments of conscious visual experience inferred from oscillatory brain activity. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103, 5626-5631.	7.1	66
115	Diagnostic colours contribute to the early stages of scene categorization: Behavioural and neurophysiological evidence. Visual Cognition, 2005, 12, 878-892.	1.6	99
116	A mechanism for impaired fear recognition after amygdala damage. Nature, 2005, 433, 68-72.	27.8	1,193
117	Accurate statistical tests for smooth classification images. Journal of Vision, 2005, 5, 1.	0.3	162
118	Does Prosopagnosia Take the Eyes Out of Face Representations? Evidence for a Defect in Representing Diagnostic Facial Information following Brain Damage. Journal of Cognitive Neuroscience, 2005, 17, 1652-1666.	2.3	174
119	Top-down attentional modulation of spatial frequency processing in scene perception. Visual Cognition, 2005, 12, 925-937.	1.6	9
120	Transmitting and Decoding Facial Expressions. Psychological Science, 2005, 16, 184-189.	3.3	585
121	The use of visual information in natural scenes. Visual Cognition, 2005, 12, 938-953.	1.6	53
122	Applying Bubbles to Localize Features That Control Pigeons' Visual Discrimination Behavior Journal of Experimental Psychology, 2005, 31, 376-382.	1.7	48
123	Receptive Fields for Flexible Face Categorizations. Psychological Science, 2004, 15, 753-761.	3.3	84
124	A picture is worth thousands of trials: rendering the use of visual information from spiking neurons to recognition. Cognitive Science, 2004, 28, 141-146.	1.7	12
125	Spatio-temporal dynamics of face recognition in a flash: it's in the eyes. Cognitive Science, 2004, 28, 289-301.	1.7	40
126	Spatio-temporal dynamics of face recognition in a flash: it's in the eyes. Cognitive Science, 2004, 28, 289-301.	1.7	114

#	Article	IF	CITATIONS
127	No troubles with bubbles: a reply to Murray and Gold. Vision Research, 2004, 44, 471-477.	1.4	35
128	Scale invariant adaptation in fusiform face-responsive regions. NeuroImage, 2004, 22, 232-242.	4.2	95
129	What goes up may come down: perceptual process and knowledge access in the organization of complex visual patterns by young infants. Cognitive Science, 2003, 27, 923-935.	1.7	23
130	Attention enhances feature integration. Vision Research, 2003, 43, 1793-1798.	1.4	18
131	Expectancy effects on spatial frequency processing. Vision Research, 2003, 43, 2759-2772.	1.4	13
132	Superstitious Perceptions Reveal Properties of Internal Representations. Psychological Science, 2003, 14, 505-509.	3.3	161
133	A principled method for determining the functionality of brain responses. NeuroReport, 2003, 14, 1665-1669.	1.2	87
134	Show Me the Features! Understanding Recognition From the Use of Visual Information. Psychological Science, 2002, 13, 402-409.	3.3	410
135	Understanding Dali's Slave Market with the Disappearing Bust of Voltaire: A Case Study in the Scale Information Driving Perception. Perception, 2002, 31, 683-691.	1.2	33
136	RAP: a new framework for visual categorization. Trends in Cognitive Sciences, 2002, 6, 70-77.	7.8	50
137	You are about to see pictorial representations!. Behavioral and Brain Sciences, 2002, 25, 191-192.	0.7	3
138	Bubbles: a technique to reveal the use of information in recognition tasks. Vision Research, 2001, 41, 2261-2271.	1.4	588
139	Functional identification of constraints on feature creation. Behavioral and Brain Sciences, 2001, 24, 1147-1148.	0.7	0
140	Why do we SLIP to the basic level? Computational constraints and their implementation Psychological Review, 2001, 108, 735-758.	3.8	42
141	Usage of spatial scales for the categorization of faces, objects, and scenes. Psychonomic Bulletin and Review, 2001, 8, 454-469.	2.8	189
142	Diagnostic Colors Mediate Scene Recognition. Cognitive Psychology, 2000, 41, 176-210.	2.2	355
143	The case for cognitive penetrability. Behavioral and Brain Sciences, 1999, 22, 394-395.	0.7	0
144	Dr. Angry and Mr. Smile: when categorization flexibly modifies the perception of faces in rapid visual presentations. Cognition, 1999, 69, 243-265.	2.2	411

Philippe G Schyns

#	Article	IF	CITATIONS
145	Blind to Object Changes: When Learning the Same Object at Different Levels of Categorization Modifies Its Perception. Psychological Science, 1999, 10, 249-255.	3.3	93
146	Diagnostic recognition: task constraints, object information, and their interactions. Cognition, 1998, 67, 147-179.	2.2	213
147	The development of features in object concepts. Behavioral and Brain Sciences, 1998, 21, 1-17.	0.7	768
148	Ways of featuring in object categorization. Behavioral and Brain Sciences, 1998, 21, 41-54.	0.7	5
149	Learning to Bridge Between Perception and Cognition. Psychology of Learning and Motivation - Advances in Research and Theory, 1997, 36, 1-14.	1.1	13
150	Categories and percepts: a bi-directionnal framework for categorization. Trends in Cognitive Sciences, 1997, 1, 183-189.	7.8	15
151	Flexible, Diagnosticity-Driven, Rather Than Fixed, Perceptually Determined Scale Selection in Scene and Face Recognition. Perception, 1997, 26, 1027-1038.	1.2	83
152	Information and viewpoint dependence in face recognition. Cognition, 1997, 62, 201-222.	2.2	221
153	Coarse Blobs or Fine Edges? Evidence That Information Diagnosticity Changes the Perception of Complex Visual Stimuli. Cognitive Psychology, 1997, 34, 72-107.	2.2	395
154	Categorization creates functional features Journal of Experimental Psychology: Learning Memory and Cognition, 1997, 23, 681-696.	0.9	203
155	A Modular Neural Network Model of Concept Acquisition. Cognitive Science, 1991, 15, 461-508.	1.7	118
156	Facial Expressions of Emotion Transmit Multiplexed Signals of Categorical and Dimensional Information. SSRN Electronic Journal, 0, , .	0.4	0