
Carla Ceoloni

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/648279/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Small "Nested―Introgressions from Wild Thinopyrum Species, Conferring Effective Resistance to Fusarium Diseases, Positively Impact Durum Wheat Yield Potential. Plants, 2021, 10, 579.	3.5	6
2	Transgene pyramiding in wheat: Combination of deoxynivalenol detoxification with inhibition of cell wall degrading enzymes to contrast Fusarium Head Blight and Crown Rot. Plant Science, 2021, 313, 111059.	3.6	6
3	Assessing the Ability of Durum Wheat-Thinopyrum ponticum Recombinant Lines to Suppress Naturally Occurring Weeds under Different Sowing Densities. Agronomy, 2020, 10, 709.	3.0	4
4	Engineered Durum Wheat Germplasm with Multiple Alien Introgressions: Agronomic and Quality Performance. Agronomy, 2020, 10, 486.	3.0	8
5	Equipping Durum Wheat—Thinopyrum ponticum Recombinant Lines With a Thinopyrum elongatum Major QTL for Resistance to Fusarium Diseases Through a Cytogenetic Strategy. Frontiers in Plant Science, 2019, 10, 1324.	3.6	19
6	Deoxynivalenol Detoxification in Transgenic Wheat Confers Resistance to Fusarium Head Blight and Crown Rot Diseases. Molecular Plant-Microbe Interactions, 2019, 32, 583-592.	2.6	36
7	Yield of chromosomally engineered durum wheat-Thinopyrum ponticum recombinant lines in a range of contrasting rain-fed environments. Field Crops Research, 2018, 228, 147-157.	5.1	11
8	Cytogenetic mapping of a major locus for resistance to Fusarium head blight and crown rot of wheat on Thinopyrum elongatum 7EL and its pyramiding with valuable genes from a Th. ponticum homoeologous arm onto bread wheat 7DL. Theoretical and Applied Genetics, 2017, 130, 2005-2024.	3.6	53
9	New insights into the <i>Taxus baccata</i> L. karyotype based on conventional and molecular cytogenetic analyses. Caryologia, 2017, 70, 248-257.	0.3	5
10	Harnessing Genetic Diversity of Wild Gene Pools to Enhance Wheat Crop Production and Sustainability: Challenges and Opportunities. Diversity, 2017, 9, 55.	1.7	32
11	Effects of Thinopyrum ponticum chromosome segments transferred into durum wheat on yield components and related morpho-physiological traits in Mediterranean rain-fed conditions. Field Crops Research, 2016, 186, 86-98.	5.1	20
12	Wheat-Perennial Triticeae Introgressions: Major Achievements and Prospects. , 2015, , 273-313.		12
13	Targeted exploitation of gene pools of alien Triticeae species for sustainable and multi-faceted improvement of the durum wheat crop. Crop and Pasture Science, 2014, 65, 96.	1.5	19
14	A novel assembly of Thinopyrum ponticum genes into the durum wheat genome: pyramiding Fusarium head blight resistance onto recombinant lines previously engineered for other beneficial traits from the same alien species. Molecular Breeding, 2014, 34, 1701-1716.	2.1	22
15	Structural–functional dissection and characterization of yield-contributing traits originating from a group 7 chromosome of the wheatgrass species <i>Thinopyrum ponticum</i> after transfer into durum wheat. Journal of Experimental Botany, 2014, 65, 509-525.	4.8	26
16	Genomes, Chromosomes and Genes of the Wheatgrass Genus Thinopyrum: the Value of their Transfer into Wheat for Gains in Cytogenomic Knowledge and Sustainable Breeding. , 2014, , 333-358.		20
17	FISHIS: Fluorescence In Situ Hybridization in Suspension and Chromosome Flow Sorting Made Easy. PLoS ONE, 2013, 8, e57994.	2.5	105
18	Stacking small segments of the 1D chromosome of bread wheat containing major gluten quality genes into durum wheat: transfer strategy and breeding prospects. Molecular Breeding, 2012, 30, 149-167.	2.1	29

CARLA CEOLONI

#	Article	IF	CITATIONS
19	A candidate for Lr19, an exotic gene conditioning leaf rust resistance in wheat. Functional and Integrative Genomics, 2009, 9, 325-334.	3.5	33
20	Pyramiding different alien chromosome segments in durum wheat: Feasibility and breeding potential. Israel Journal of Plant Sciences, 2007, 55, 267-276.	0.5	19
21	Dissecting a wheat QTL for yield present in a range of environments: from the QTL to candidate genes. Journal of Experimental Botany, 2006, 57, 2627-2637.	4.8	327
22	Chromosome Engineering of the Durum Wheat Genome. Genetic Resources, Chromosome Engineering, and Crop Improvement Series, 2006, , 27-59.	0.3	29
23	Recent developments in durum wheat chromosome engineering. Cytogenetic and Genome Research, 2005, 109, 328-334.	1.1	49
24	Genetic analysis of the Aegilops longissima 3S chromosome carrying the Pm13 resistance gene. Euphytica, 2003, 130, 177-183.	1.2	12
25	Isolation and characterization of S genome specific sequences from <i>Aegilops</i> sect. <i>sitopsis</i> species. Genome, 2003, 46, 478-489.	2.0	20
26	Identification of molecular markers linked to Pm13, an Aegilops longissima gene conferring resistance to powdery mildew in wheat. Theoretical and Applied Genetics, 1999, 98, 448-454.	3.6	78
27	Physical mapping of wheat- <i>Aegilops longissima</i> breakpoints in mildew-resistant recombinant lines using FISH with highly repeated and low-copy DNA probes. Genome, 1999, 42, 1013-1019.	2.0	18
28	Physical mapping of wheat- <i>Aegilops longissima</i> breakpoints in mildew-resistant recombinant lines using FISH with highly repeated and low-copy DNA probes. Genome, 1999, 42, 1013-1019.	2.0	11
29	Fluorescence in situ hybridization with multiple repeated DNA probes applied to the analysis of wheat-rye chromosome pairing. Theoretical and Applied Genetics, 1997, 94, 347-355.	3.6	55
30	Isolation of a chromosomally engineered durum wheat line carrying the common wheat Glu-D1d allele. Agronomy for Sustainable Development, 1997, 17, 413-419.	0.8	25
31	Wheat chromosome engineering at the 4x level: the potential of different alien gene transfers into durum wheat. Euphytica, 1996, 89, 87-97.	1.2	54
32	Cytogenetic and molecular mapping of the wheat-Aegilops longissima chromatin breakpoints in powdery mildew-resistant introgression lines. Theoretical and Applied Genetics, 1995, 91, 738-743.	3.6	53
33	Variation in highly repetitive DNA composition of heterochromatin in rye studied by fluorescence in situ hybridization. Genome, 1995, 38, 1061-1069.	2.0	61
34	Combining mutations for the two homoeologous pairing suppressor genes <i>Ph1</i> and <i>Ph2</i> in common wheat and in hybrids with alien Triticeae. Genome, 1993, 36, 377-386.	2.0	27
35	Effect of Ph2 mutants promoting homoeologous pairing on spindle sensitivity to colchicine in common wheat. Genome, 1987, 29, 658-663.	2.0	2
36	Effect of different doses of group-2 chromosomes on homoeologous pairing in intergeneric wheat hybrids. Genome, 1986, 28, 240-246.	0.7	21

CARLA CEOLONI

#	Article	IF	CITATIONS
37	Spindle sensitivity to isopropyl- <i>N</i> -phenyl-carbamate and griseofulvin of common wheat plants carrying different doses of the <i>Ph1</i> gene. Genome, 1984, 26, 119-127.	0.7	10
38	Spindle sensitivity to colchicine of the Ph1 mutant in common wheat. Genome, 1984, 26, 111-118.	0.7	12
39	Race differentiation and search for sources of resistance to Rhynchosporium secalis in barley in Italy. Euphytica, 1980, 29, 547-553.	1.2	37