Zhong Li

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/648277/publications.pdf

Version: 2024-02-01

136	7,933	52	82
papers	citations	h-index	g-index
137	137 docs citations	137	7569
all docs		times ranked	citing authors

#	Article	IF	CITATIONS
1	The modulation of <scp>ethaneâ€selective</scp> adsorption performance in series of bimetal <scp>PCN</scp> ‣50 metal–organic frameworks: Impact of metal composition. AICHE Journal, 2022, 68, e17385.	3.6	11
2	Catalytic adsorptive desulfurization of mercaptan, sulfide and disulfide using bifunctional Ti-based adsorbent for ultra-clean oil. Chinese Journal of Chemical Engineering, 2022, 42, 25-34.	3.5	2
3	Separation of propylene and propane with pillar-layer metal–organic frameworks by exploiting thermodynamic-kinetic synergetic effect. Chemical Engineering Journal, 2022, 431, 133284.	12.7	7
4	Robust Nickel-Based Metal–Organic Framework for Highly Efficient Methane Purification and Capture. ACS Applied Materials & Interfaces, 2022, 14, 4242-4250.	8.0	17
5	Preferential Adsorption Performance of Ethane in a Robust Nickel-Based Metal–Organic Framework for Separating Ethane from Ethylene. ACS Omega, 2022, 7, 7648-7654.	3.5	7
6	Catalytic Degradation of Polyethylene Terephthalate Using a Phaseâ€Transitional Zirconiumâ€Based Metal–Organic Framework. Angewandte Chemie - International Edition, 2022, 61, .	13.8	30
7	Catalytic Degradation of Polyethylene Terephthalate Using a Phaseâ€Transitional Zirconiumâ€Based Metal–Organic Framework. Angewandte Chemie, 2022, 134, .	2.0	4
8	Novel Granular Biomass-Based Carbons with Excellent C ₂ H ₆ /CH ₄ Selectivity for Recovering Light Hydrocarbons from Natural Gas. ACS Sustainable Chemistry and Engineering, 2022, 10, 5633-5642.	6.7	9
9	High-Performance Selective CO ₂ Capture on a Stable and Flexible Metal–Organic Framework via Discriminatory Gate-Opening Effect. ACS Applied Materials & Samp; Interfaces, 2022, 14, 21089-21097.	8.0	14
10	Mechanistic Investigation of Enhanced Catalytic Selectivity toward Alcohol Oxidation with Ce Oxysulfate Clusters. Journal of the American Chemical Society, 2022, 144, 12092-12101.	13.7	6
11	Integration of Earth-Abundant Photosensitizers and Catalysts in Metal–Organic Frameworks Enhances Photocatalytic Aerobic Oxidation. ACS Catalysis, 2021, 11, 1024-1032.	11.2	47
12	Insights into the Structure–Activity Relationship in Aerobic Alcohol Oxidation over a Metal–Organic-Framework-Supported Molybdenum(VI) Catalyst. Journal of the American Chemical Society, 2021, 143, 4302-4310.	13.7	48
13	Adsorption Property of Starch-Based Microporous Carbon Materials with High Selectivity and Uptake for C1/C2/C3 Separation. Industrial & Engineering Chemistry Research, 2021, 60, 4668-4676.	3.7	13
14	Tuning the Structural Flexibility for Multi-Responsive Gas Sorption in Isonicotinate-Based Metal–Organic Frameworks. ACS Applied Materials & Samp; Interfaces, 2021, 13, 16820-16827.	8.0	31
15	Ultramicroporous carbons featuring subâ \in Ãngstrom tunable apertures for the selective separation of light hydrocarbon. AICHE Journal, 2021, 67, e17285.	3.6	27
16	Highly Efficient Capture of Postcombustion Generated CO ₂ through a Copper-Based Metal–Organic Framework. Energy & Fuels, 2021, 35, 610-617.	5.1	14
17	A novel mechanism of controlling ultramicropore size in carbons at sub-angstrom level for molecular sieving of propylene/propane mixtures. Journal of Materials Chemistry A, 2021, 9, 23873-23881.	10.3	25
18	Heterometallic Ce ^{IV} / V ^V Oxo Clusters with Adjustable Catalytic Reactivities. Journal of the American Chemical Society, 2021, 143, 21056-21065.	13.7	21

#	Article	IF	CITATIONS
19	Efficient adsorptive separation of propene over propane through a pillarâ€layer cobaltâ€based metal–organic framework. AICHE Journal, 2020, 66, e16858.	3.6	34
20	Synthesis of novel particle rice-based carbon materials and its excellent CH4/N2 adsorption selectivity for methane enrichment from Low-rank natural gas. Chemical Engineering Journal, 2020, 384, 123388.	12.7	57
21	Metal–Organic Frameworks Significantly Enhance Photocatalytic Hydrogen Evolution and CO ₂ Reduction with Earth-Abundant Copper Photosensitizers. Journal of the American Chemical Society, 2020, 142, 690-695.	13.7	193
22	Room temperature synthesis of Cu(Qc)2 and its application for ethane capture from light hydrocarbons. Chemical Engineering Science, 2020, 213, 115355.	3.8	25
23	Insights into the Structure–Activity Relationships in Metal–Organic Framework-Supported Nickel Catalysts for Ethylene Hydrogenation. ACS Catalysis, 2020, 10, 8995-9005.	11.2	40
24	Tuning the Atrazine Binding Sites in an Indium-Based Flexible Metal–Organic Framework. ACS Applied Materials & Diterfaces, 2020, 12, 44762-44768.	8.0	11
25	Structural Diversity of Zirconium Metal–Organic Frameworks and Effect on Adsorption of Toxic Chemicals. Journal of the American Chemical Society, 2020, 142, 21428-21438.	13.7	95
26	Enhancing Selective Adsorption in a Robust Pillared-Layer Metal–Organic Framework via Channel Methylation for the Recovery of C2–C3 from Natural Gas. ACS Applied Materials & Diterfaces, 2020, 12, 51499-51505.	8.0	50
27	Desulfurization Kinetics and Regeneration of Silica Gel-Supported TiO ₂ Extrudates for Reactive Adsorptive Desulfurization of Real Diesel. Industrial & Engineering Chemistry Research, 2020, 59, 10130-10141.	3.7	23
28	Improving <scp>CH₄</scp> / <scp>N₂</scp> selectivity within isomeric Alâ€based MOFs for the highly selective capture of coalâ€mine methane. AICHE Journal, 2020, 66, e16287.	3.6	42
29	Selective extraction of methane from C1/C2/C3 on moisture-resistant MIL-142A with interpenetrated networks. Chemical Engineering Journal, 2020, 395, 125057.	12.7	36
30	Room-Temperature Synthesis of Pyr _{1/3} @Cuâ€"BTC with Enhanced Stability and Its Excellent Performance for Separation of Propylene/Propane. Industrial & Engineering Chemistry Research, 2020, 59, 6202-6209.	3.7	12
31	Oxygen-Selective Adsorption Property of Ultramicroporous MOF Cu(Qc) ₂ for Air Separation. Industrial & Separati	3.7	18
32	Bimetallic ions regulate pore size and chemistry of zeolites for selective adsorption of ethylene from ethane. Chemical Engineering Science, 2020, 220, 115636.	3.8	36
33	Facile synthesis of ultramicroporous carbon adsorbents with ultraâ€high <scp>CH₄</scp> uptake by in situ ionic activation. AICHE Journal, 2020, 66, e16231.	3.6	39
34	Cerium-Based Metal–Organic Layers Catalyze Hydrogen Evolution Reaction through Dual Photoexcitation. Journal of the American Chemical Society, 2020, 142, 6866-6871.	13.7	49
35	Metal–Organic Frameworks Integrate Cu Photosensitizers and Secondary Building Unit-Supported Fe Catalysts for Photocatalytic Hydrogen Evolution. Journal of the American Chemical Society, 2020, 142, 10302-10307.	13.7	79
36	Ultra-Deep Desulfurization of Real Diesel Using Two-Layer Silica Gels under Mild Conditions. Energy &	5.1	14

#	Article	IF	CITATIONS
37	Ultrahigh CO2/CH4 and CO2/N2 adsorption selectivities on a cost-effectively L-aspartic acid based metal-organic framework. Chemical Engineering Journal, 2019, 375, 122074.	12.7	50
38	Zirconium-Based Metal–Organic Framework with 9-Connected Nodes for Ammonia Capture. ACS Applied Nano Materials, 2019, 2, 6098-6102.	5.0	59
39	Rapid room temperature conversion of hydroxy double salt to MOF-505 for CO ₂ capture. CrystEngComm, 2019, 21, 165-171.	2.6	13
40	Metal–Organic Framework Stabilizes a Low-Coordinate Iridium Complex for Catalytic Methane Borylation. Journal of the American Chemical Society, 2019, 141, 11196-11203.	13.7	65
41	Ethane-Selective Behavior Achieved on a Nickel-Based Metal–Organic Framework: Impact of Pore Effect and Hydrogen Bonds. Industrial & Engineering Chemistry Research, 2019, 58, 10516-10523.	3.7	15
42	Vanadium Catalyst on Isostructural Transition Metal, Lanthanide, and Actinide Based Metal–Organic Frameworks for Alcohol Oxidation. Journal of the American Chemical Society, 2019, 141, 8306-8314.	13.7	112
43	Moisture stability of ethaneâ€selective Ni(II), Fe(III), Zr(IV)â€based metal–organic frameworks. AICHE Journal, 2019, 65, e16616.	3.6	28
44	Pore environment engineering in metal–organic frameworks for efficient ethane/ethylene separation. Journal of Materials Chemistry A, 2019, 7, 13585-13590.	10.3	91
45	Selectively Trapping Ethane from Ethylene on Metal–Organic Framework MIL-53(Al)-FA. Industrial & Engineering Chemistry Research, 2019, 58, 8290-8295.	3.7	39
46	Novel room-temperature synthesis of MIL-100(Fe) and its excellent adsorption performances for separation of light hydrocarbons. Chemical Engineering Journal, 2019, 355, 679-686.	12.7	82
47	An indium-based ethane-trapping MOF for efficient selective separation of C2H6/C2H4 mixture. Separation and Purification Technology, 2019, 212, 51-56.	7.9	49
48	Enhanced CO ₂ Adsorption and CO ₂ /N ₂ /CH ₄ Selectivity of Novel Carbon Composites CPDA@A-Cs. Energy & Selectivity Of Novel Carbon C	5.1	28
49	Glycine-Modified HKUST-1 with Simultaneously Enhanced Moisture Stability and Improved Adsorption for Light Hydrocarbons Separation. ACS Sustainable Chemistry and Engineering, 2019, 7, 1557-1563.	6.7	37
50	Tuning secondary building unit of Cu-BTC to simultaneously enhance its CO2 selective adsorption and stability under moisture. Chemical Engineering Journal, 2019, 355, 815-821.	12.7	56
51	Postsynthetic Strategy To Prepare ACN@Cu-BTCs with Enhanced Water Vapor Stability and CO ₂ /CH ₄ Separation Selectivity. Industrial & Discrete Characteristics and Research, 2018, 57, 3765-3772.	3.7	37
52	Ethaneâ€selective carbon composites CPDA@Aâ€ACs with high uptake and its enhanced ethane/ethylene adsorption selectivity. AICHE Journal, 2018, 64, 3390-3399.	3.6	41
53	Selective Adsorption of Ethane over Ethylene in PCN-245: Impacts of Interpenetrated Adsorbent. ACS Applied Materials & Samp; Interfaces, 2018, 10, 8366-8373.	8.0	112
54	Iron-Based Metal–Organic Framework with Hydrophobic Quadrilateral Channels for Highly Selective Separation of Hexane Isomers. ACS Applied Materials & Interfaces, 2018, 10, 6031-6038.	8.0	43

#	Article	IF	CITATIONS
55	Liquid-Assisted Mechanochemical Synthesis of Copper Based MOF-505 for the Separation of CO ₂ over CH ₄ or N ₂ . Industrial & Discrete Research, 2018, 57, 703-709.	3.7	78
56	Highly Adsorptive Separation of Ethane/Ethylene by An Ethane-Selective MOF MIL-142A. Industrial & Engineering Chemistry Research, 2018, 57, 4063-4069.	3.7	88
57	Novel asphalt-based carbon adsorbents with super-high adsorption capacity and excellent selectivity for separation for light hydrocarbons. Separation and Purification Technology, 2018, 190, 60-67.	7.9	40
58	An ethane-trapping MOF PCN-250 for highly selective adsorption of ethane over ethylene. Chemical Engineering Science, 2018, 175, 110-117.	3.8	177
59	Dynamic catalytic adsorptive desulfurization of real diesel over ultraâ€stable and lowâ€cost silica gelâ€supported TiO ₂ . AICHE Journal, 2018, 64, 2146-2159.	3.6	51
60	Unusual Moisture-Enhanced CO ₂ Capture within Microporous PCN-250 Frameworks. ACS Applied Materials & Samp; Interfaces, 2018, 10, 38638-38647.	8.0	57
61	Regeneration of AgXO@SBA-15 for reactive adsorptive desulfurization of fuel. Petroleum Science, 2018, 15, 857-869.	4.9	10
62	Highly selective adsorption separation of light hydrocarbons with a porphyrinic zirconium metal-organic framework PCN-224. Separation and Purification Technology, 2018, 207, 262-268.	7.9	67
63	Selective Adsorptive Separation of CO ₂ /CH ₄ and CO ₂ /N ₂ by a Water Resistant Zirconium–Porphyrin Metal–Organic Framework. Industrial & Engineering Chemistry Research, 2018, 57, 12215-12224.	3.7	48
64	Asphalt-derived high surface area activated porous carbons for the effective adsorption separation of ethane and ethylene. Chemical Engineering Science, 2017, 162, 192-202.	3.8	92
65	Highly active and selective Coâ€based Fischer–Tropsch catalysts derived from metal–organic frameworks. AICHE Journal, 2017, 63, 2935-2944.	3.6	34
66	Selective Adsorption of Light Alkanes on a Highly Robust Indium Based Metal–Organic Framework. Industrial & Chemistry Research, 2017, 56, 4488-4495.	3.7	59
67	Zeolitic Imidazolate Framework Membranes Supported on Macroporous Carbon Hollow Fibers by Fluidic Processing Techniques. Advanced Materials Interfaces, 2017, 4, 1700080.	3.7	34
68	Novel glucose-based adsorbents (Glc-Cs) with high CO 2 capacity and excellent CO 2 /CH 4 /N 2 adsorption selectivity. Chemical Engineering Journal, 2017, 327, 51-59.	12.7	54
69	Formation of willow leaf-like structures composed of NH2-MIL68(In) on a multifunctional multiwalled carbon nanotube backbone for enhanced photocatalytic reduction of Cr(VI). Nano Research, 2017, 10, 3543-3556.	10.4	65
70	Efficient Mechanochemical Synthesis of MOF-5 for Linear Alkanes Adsorption. Journal of Chemical & Engineering Data, 2017, 62, 2030-2036.	1.9	101
71	Efficient adsorptive separation of C3H6 over C3H8 on flexible and thermoresponsive CPL-1. Chemical Engineering Journal, 2017, 328, 360-367.	12.7	81
72	Efficient kinetic separation of propene and propane using two microporous metal organic frameworks. Chemical Communications, 2017, 53, 9332-9335.	4.1	91

#	Article	IF	Citations
73	Novel glucose-based adsorbents (Glc-As) with preferential adsorption of ethane over ethylene and high capacity. Chemical Engineering Science, 2017, 172, 612-621.	3.8	30
74	Enhanced Adsorption Performance of Aromatics on a Novel Chromium-Based MIL-101@Graphite Oxide Composite. Energy & Energy	5.1	20
75	Selective Adsorption Performances of UiO-67 for Separation of Light Hydrocarbons C1, C2, and C3. Industrial & Engineering Chemistry Research, 2017, 56, 8689-8696.	3.7	63
76	Ultrafast room temperature synthesis of novel composites Imi@Cu-BTC with improved stability against moisture. Chemical Engineering Journal, 2017, 307, 537-543.	12.7	51
77	A new MOF-505@GO composite with high selectivity for CO 2 /CH 4 and CO 2 /N 2 separation. Chemical Engineering Journal, 2017, 308, 1065-1072.	12.7	230
78	A novel carbonized polydopamine (Câ€PDA) adsorbent with high CO ₂ adsorption capacity and water vapor resistance. AICHE Journal, 2016, 62, 3730-3738.	3.6	43
79	A novel bimetallic MIL-101(Cr, Mg) with high CO2 adsorption capacity and CO2/N2 selectivity. Chemical Engineering Science, 2016, 147, 109-117.	3.8	136
80	Improved Ethanol Adsorption Capacity and Coefficient of Performance for Adsorption Chillers of Cu-BTC@GO Composite Prepared by Rapid Room Temperature Synthesis. Industrial & Engineering Chemistry Research, 2016, 55, 11767-11774.	3.7	24
81	Ultrafast room temperature synthesis of GrO@HKUST-1 composites with high CO2 adsorption capacity and CO2/N2 adsorption selectivity. Chemical Engineering Journal, 2016, 303, 231-237.	12.7	117
82	Ethane selective adsorbent Ni(bdc)(ted)0.5 with high uptake and its significance in adsorption separation of ethane and ethylene. Chemical Engineering Science, 2016, 148, 275-281.	3.8	141
83	Graphene-Immobilized <i>fac</i> -Re(bipy)(CO) ₃ Cl for Syngas Generation from Carbon Dioxide. ACS Applied Materials & Interfaces, 2016, 8, 4192-4198.	8.0	21
84	Catalytic adsorptive desulfurization of model diesel fuel using TiO2/SBA-15 under mild conditions. Fuel, 2016, 174, 118-125.	6.4	67
85	Design, Synthesis, and Characterization of a Bifunctional Chelator with Ultrahigh Capacity for Uranium Uptake from Seawater Simulant. Industrial & Engineering Chemistry Research, 2016, 55, 4170-4178.	3.7	25
86	Preparation of CuCl@AC with high CO adsorption capacity and selectivity from CO/N2 binary mixture. Adsorption, 2015, 21, 373-381.	3.0	26
87	Removal of organic sulfur compounds from diesel by adsorption on carbon materials. Reviews in Chemical Engineering, 2015, 31, .	4.4	34
88	Competitive Adsorption of Carbon Monoxide and Water Vapour on MIL-100(Fe) Prepared Using a Microwave Method. Adsorption Science and Technology, 2015, 33, 279-296.	3.2	7
89	Chemoselective Hydrogenation of Cinnamaldehyde over a Pt-Lewis Acid Collaborative Catalyst under Ambient Conditions. Industrial & Engineering Chemistry Research, 2015, 54, 1487-1497.	3.7	60
90	Enhanced separation performance of a novel composite material GrO@MIL-101 for CO2/CH4 binary mixture. Chemical Engineering Journal, 2015, 266, 339-344.	12.7	106

#	Article	IF	CITATIONS
91	Highly enhanced and weakened adsorption properties of two MOFs by water vapor for separation of CO2/CH4 and CO2/N2 binary mixtures. Chemical Engineering Journal, 2015, 270, 385-392.	12.7	115
92	A CO ₂ â€stable hollowâ€fiber membrane with high hydrogen permeation flux. AICHE Journal, 2015, 61, 1997-2007.	3.6	45
93	Highly stable PtP alloy nanotube arrays as a catalyst for the oxygen reduction reaction in acidic medium. Chemical Science, 2015, 6, 3211-3216.	7.4	63
94	Flexible and mechanically-stable MIL-101(Cr)@PFs for efficient benzene vapor and CO ₂ adsorption. RSC Advances, 2015, 5, 94276-94282.	3.6	21
95	Binder-free Co–CoO _x nanowire arrays for lithium ion batteries with excellent rate capability and ultra-long cycle life. Journal of Materials Chemistry A, 2015, 3, 19711-19717.	10.3	39
96	Competitive adsorption of water vapor with VOCs dichloroethane, ethyl acetate and benzene on MIL-101(Cr) in humid atmosphere. RSC Advances, 2015, 5, 1827-1834.	3.6	92
97	Competitive adsorption and selectivity of benzene and water vapor on the microporous metal organic frameworks (HKUST-1). Chemical Engineering Journal, 2015, 259, 79-89.	12.7	220
98	Carbon nanotube catalysts for oxidative desulfurization of a model diesel fuel using molecular oxygen. Green Chemistry, 2014, 16, 211-220.	9.0	183
99	Novel nitrogen-rich porous carbon spheres as a high-performance anode material for lithium-ion batteries. Journal of Materials Chemistry A, 2014, 2, 16617-16622.	10.3	57
100	Partial oxidation of methane in hollowâ€fiber membrane reactors based on alkalineâ€earth metalâ€free CO ₂ â€tolerant oxide. AICHE Journal, 2014, 60, 3587-3595.	3.6	25
101	A novel MOF/graphene oxide composite GrO@MIL-101 with high adsorption capacity for acetone. Journal of Materials Chemistry A, 2014, 2, 4722-4730.	10.3	202
102	Graphene-wrapped chromium-MOF(MIL-101)/sulfur composite for performance improvement of high-rate rechargeable Li–S batteries. Journal of Materials Chemistry A, 2014, 2, 13509-13512.	10.3	171
103	Preparation and Adsorption Performance of GrO@Cu-BTC for Separation of CO ₂ /CH ₄ . Industrial & Engineering Chemistry Research, 2014, 53, 11176-11184.	3.7	124
104	Thermal stability of phosphorus-containing styrene–acrylic copolymer and its fire retardant performance in waterborne intumescent coatings. Journal of Thermal Analysis and Calorimetry, 2013, 114, 937-946.	3.6	23
105	Experimental and molecular simulation studies of CO2 adsorption on zeolitic imidazolate frameworks: ZIF-8 and amine-modified ZIF-8. Adsorption, 2013, 19, 25-37.	3.0	115
106	Substantial Recoverable Energy Storage in Percolative Metallic Aluminumâ€Polypropylene Nanocomposites. Advanced Functional Materials, 2013, 23, 3560-3569.	14.9	87
107	S/O-Functionalities on Modified Carbon Materials Governing Adsorption of Water Vapor. Journal of Physical Chemistry C, 2013, 117, 23057-23065.	3.1	32
108	Oxyâ€fuel combustion for CO ₂ capture using a CO ₂ â€tolerant oxygen transporting membrane. AICHE Journal, 2013, 59, 3856-3862.	3.6	13

#	Article	IF	CITATIONS
109	Decomposition of Toluene in a Plasma Catalysis SystemÂwith NiO, MnO2, CeO2, Fe2O3, and CuO Catalysts. Plasma Chemistry and Plasma Processing, 2013, 33, 1073-1082.	2.4	43
110	Effect of Textural Properties on the Adsorption and Desorption of Toluene on the Metal-Organic Frameworks HKUST-1 and MIL-101. Adsorption Science and Technology, 2013, 31, 325-339.	3.2	44
111	An Overview of Adsorbents in the Rotary Desiccant Dehumidifier for Air Dehumidification. Drying Technology, 2013, 31, 1334-1345.	3.1	77
112	Enhancement of <scp>CO₂</scp> Adsorption and <scp>CO₂/N₂</scp> Selectivity on <scp>ZIF</scp> â€8 via Postsynthetic Modification. AICHE Journal, 2013, 59, 2195-2206.	3.6	171
113	Adsorption Isotherms, Kinetics, and Desorption of 1,2-Dichloroethane on Chromium-Based Metal Organic Framework MIL-101. Separation Science and Technology, 2013, 48, 1479-1489.	2.5	49
114	Metal–organic framework MIL-101 doped with palladium for toluene adsorption and hydrogen storage. RSC Advances, 2013, 4, 2414-2420.	3.6	52
115	Lubrication Properties of Polyalphaolefin and Polysiloxane Lubricants: Molecular Structure–Tribology Relationships. Tribology Letters, 2012, 48, 355.	2.6	44
116	Effects of Aromatics, Diesel Additives, Nitrogen Compounds, and Moisture on Adsorptive Desulfurization of Diesel Fuel over Activated Carbon. Industrial & Engineering Chemistry Research, 2012, 51, 3436-3443.	3.7	124
117	Oxygen permeation through a CO ₂ â€tolerant mixed conducting oxide (Pr _{0.9} La _{0.1}) ₂ (Ni _{0.74} Cu _{0.21} Ga _{0.05} <td>b>)Oksub</td> <td>>44Î</td>	b>)O ksub	>4 4 Î
118	Oxygen separation through Uâ€shaped hollow fiber membrane using pure CO ₂ as sweep gas. AICHE Journal, 2012, 58, 2856-2864.	3.6	47
119	Role of Temperature in the Structure of Zn(II)-1,4,-BDC Metal-Organic Frameworks and their Adsorption and Diffusion Properties for Carbon Dioxide. Separation Science and Technology, 2011, 46, 1337-1345.	2.5	7
120	Adsorption Equilibrium and Kinetics of CO ₂ on Chromium Terephthalate MIL-101. Energy & Lamp; Fuels, 2011, 25, 835-842.	5.1	149
121	Adsorption and Diffusion of Benzene on Chromium-Based Metal Organic Framework MIL-101 Synthesized by Microwave Irradiation. Industrial & Engineering Chemistry Research, 2011, 50, 2254-2261.	3.7	127
122	Adsorption and Diffusion of Ethyl Acetate on the Chromium-Based Metal–Organic Framework MIL-101. Journal of Chemical & Data, 2011, 56, 3419-3425.	1.9	32
123	Adsorption equilibrium and kinetics of p-xylene on chromium-based metal organic framework MIL-101. Chemical Engineering Journal, 2011, 173, 150-157.	12.7	77
124	Preparation and oxygen permeation of Uâ€shaped perovskite hollowâ€fiber membranes. AICHE Journal, 2011, 57, 975-984.	3.6	55
125	Adsorption of CO ₂ on Zeolite 13X and Activated Carbon with Higher Surface Area. Separation Science and Technology, 2010, 45, 710-719.	2.5	109
126	Enhancement of CO2 adsorption on high surface area activated carbon modified by N2, H2 and ammonia. Chemical Engineering Journal, 2010, 160, 571-577.	12.7	164

ZHONG LI

#	Article	IF	CITATION
127	Dynamics and isotherms of water vapor sorption on mesoporous silica gels modified by different salts. Kinetics and Catalysis, 2010, 51, 754-761.	1.0	35
128	Adsorption of Dibenzothiophene on Ag/Cu/Fe-Supported Activated Carbons Prepared by Ultrasonic-Assisted Impregnation. Journal of Chemical & Engineering Data, 2010, 55, 5818-5823.	1.9	57
129	Equilibrium and Doâ^'Do Model Fitting of Water Adsorption on Four Commercial Activated Carbons with Different Surface Chemistry and Pore Structure. Journal of Chemical & Different Surface Chemistry and Pore Structure. Journal of Chemical & Different Surface Chemistry and Pore Structure. Journal of Chemical & Different Surface Chemistry and Pore Structure. Journal of Chemical & Different Surface Chemistry and Pore Structure. Journal of Chemical & Different Surface Chemistry and Pore Structure. Journal of Chemical & Different Surface Chemistry and Pore Structure. Journal of Chemical & Different Surface Chemistry and Pore Structure. Journal of Chemical & Different Surface Chemistry and Pore Structure. Journal of Chemical & Different Surface Chemistry and Pore Structure. Journal of Chemical & Different Surface Chemistry and Pore Structure. Journal of Chemical & Different Surface Chemistry and Pore Structure. Journal of Chemical & Different Surface Chemistry and Pore Structure. Journal of Chemical & Different Surface Chemistry and Pore Structure. Journal of Chemical & Different Surface Chemistry and Pore Structure. Journal of Chemical & Different Surface Chemistry and Pore Structure. Journal of Chemistry Surface Chemistry Su	1.9	21
130	\hat{l}^2 -Cyclodextrin promoted oxidation of primary amines to nitriles in water. Frontiers of Chemical Engineering in China, 2009, 3, 196-200.	0.6	4
131	Adsorption of Benzothiophene and Dibenzothiophene on Ion-Impregnated Activated Carbons and Ion-Exchanged Y Zeolites. Energy & Ene	5.1	112
132	Effect of ultrasound on desorption kinetics of phenol from polymeric resin. Ultrasonics Sonochemistry, 2006, 13, 225-231.	8.2	19
133	Controllable oxidation of sulfides to sulfoxides and sulfones with aqueous hydrogen peroxide in the presence of \hat{l}^2 -cyclodextrin. Russian Journal of Organic Chemistry, 2006, 42, 959-961.	0.8	20
134	Estimation of kinetics parameters in Beckmann rearrangement of cyclohexanone oxime using genetic algorithm. Central South University, 2006, 13, 383-388.	0.5	1
135	Influence of the microporosity and surface chemistry of polymeric resins on adsorptive properties toward phenol. Journal of Hazardous Materials, 2004, 113, 131-135.	12.4	27
136	Estimation of Activation Energy of Desorption of n-Hexanol from Activated Carbons by the TPD Technique. Adsorption Science and Technology, 2003, 21, 125-133.	3.2	25