List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6482416/publications.pdf Version: 2024-02-01

		61984	95266
141	5,504	43	68
papers	citations	h-index	g-index
143	143	143	4640
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Cellulose composite aerogel for highly efficient electromagnetic interference shielding. Journal of Materials Chemistry A, 2015, 3, 4983-4991.	10.3	269
2	Unusual Tuning of Mechanical Properties of Isotactic Polypropylene Using Counteraction of Shear Flow and β-Nucleating Agent on β-Form Nucleation. Macromolecules, 2009, 42, 4343-4348.	4.8	194
3	Improved barrier properties of poly(lactic acid) with randomly dispersed graphene oxide nanosheets. Journal of Membrane Science, 2014, 464, 110-118.	8.2	170
4	Unprecedented Access to Strong and Ductile Poly(lactic acid) by Introducing In Situ Nanofibrillar Poly(butylene succinate) for Green Packaging. Biomacromolecules, 2014, 15, 4054-4064.	5.4	149
5	Low-dimensional carbonaceous nanofiller induced polymer crystallization. Progress in Polymer Science, 2014, 39, 555-593.	24.7	140
6	Tunable electromagnetic interference shielding effectiveness via multilayer assembly of regenerated cellulose as a supporting substrate and carbon nanotubes/polymer as a functional layer. Journal of Materials Chemistry C, 2017, 5, 3130-3138.	5.5	137
7	Robustly Superhydrophobic Conductive Textile for Efficient Electromagnetic Interference Shielding. ACS Applied Materials & Interfaces, 2019, 11, 1680-1688.	8.0	136
8	Formation of Shish-Kebabs in Injection-Molded Poly(<scp> </scp> -lactic acid) by Application of an Intense Flow Field. ACS Applied Materials & Interfaces, 2012, 4, 6774-6784.	8.0	128
9	Morphology and properties of isotactic polypropylene/poly(ethylene terephthalate) in situ microfibrillar reinforced blends: Influence of viscosity ratio. European Polymer Journal, 2010, 46, 719-730.	5.4	121
10	Suppression of Skinâ^'Core Structure in Injection-Molded Polymer Parts by in Situ Incorporation of a Microfibrillar Network. Macromolecules, 2006, 39, 6771-6775.	4.8	109
11	Ultralight Cellulose Porous Composites with Manipulated Porous Structure and Carbon Nanotube Distribution for Promising Electromagnetic Interference Shielding. ACS Applied Materials & Interfaces, 2018, 10, 40156-40167.	8.0	108
12	Cellulose/carbon Composites and their Applications in Water Treatment – a Review. Chemical Engineering Journal, 2021, 405, 126980.	12.7	108
13	Super-Robust Polylactide Barrier Films by Building Densely Oriented Lamellae Incorporated with Ductile in Situ Nanofibrils of Poly(butylene adipate- <i>co</i> -terephthalate). ACS Applied Materials & Interfaces, 2016, 8, 8096-8109.	8.0	102
14	Understanding polymorphism formation in electrospun fibers of immiscible Poly(vinylidene fluoride) blends. Polymer, 2011, 52, 2228-2237.	3.8	101
15	Shear Flow and Carbon Nanotubes Synergistically Induced Nonisothermal Crystallization of Poly(lactic acid) and Its Application in Injection Molding. Biomacromolecules, 2012, 13, 3858-3867.	5.4	95
16	In Situ Synchrotron X-ray Scattering Study on Isotactic Polypropylene Crystallization under the Coexistence of Shear Flow and Carbon Nanotubes. Macromolecules, 2011, 44, 8080-8092.	4.8	89
17	Strong Shear Flow-Driven Simultaneous Formation of Classic Shish-Kebab, Hybrid Shish-Kebab, and Transcrystallinity in Poly(lactic acid)/Natural Fiber Biocomposites. ACS Sustainable Chemistry and Engineering, 2013, 1, 1619-1629.	6.7	89
18	Enhanced piezoelectricity from highly polarizable oriented amorphous fractions in biaxially oriented poly(vinylidene fluoride) with pure l² crystals. Nature Communications, 2021, 12, 675.	12.8	85

#	Article	IF	CITATIONS
19	Extensional Stress-Induced Orientation and Crystallization can Regulate the Balance of Toughness and Stiffness of Polylactide Films: Interplay of Oriented Amorphous Chains and Crystallites. Macromolecules, 2019, 52, 5278-5288.	4.8	79
20	Ultra-low gas permeability and efficient reinforcement of cellulose nanocomposite films by well-aligned graphene oxide nanosheets. Journal of Materials Chemistry A, 2014, 2, 15853-15863.	10.3	78
21	Interfacial Shish-Kebabs Lengthened by Coupling Effect of In Situ Flexible Nanofibrils and Intense Shear Flow: Achieving Hierarchy To Conquer the Conflicts between Strength and Toughness of Polylactide. ACS Applied Materials & Interfaces, 2017, 9, 10148-10159.	8.0	77
22	Simultaneous Reinforcement and Toughening of Carbon Nanotube/Cellulose Conductive Nanocomposite Films by Interfacial Hydrogen Bonding. ACS Sustainable Chemistry and Engineering, 2015, 3, 317-324.	6.7	76
23	Enhanced Heat Deflection Resistance via Shear Flow-Induced Stereocomplex Crystallization of Polylactide Systems. ACS Sustainable Chemistry and Engineering, 2017, 5, 1692-1703.	6.7	74

24 Crystalline morphology of isotactic polypropylene (iPP) in injection molded poly(ethylene) Tj ETQq0 0 0 rgBT /Overlock 10 Tf 50 542 Td

25	Biodegradable graphene oxide nanosheets/poly-(butylene adipate-co-terephthalate) nanocomposite film with enhanced gas and water vapor barrier properties. Polymer Testing, 2017, 58, 173-180.	4.8	68
26	From Nanofibrillar to Nanolaminar Poly(butylene succinate): Paving the Way to Robust Barrier and Mechanical Properties for Full-Biodegradable Poly(lactic acid) Films. ACS Applied Materials & Interfaces, 2015, 7, 8023-8032.	8.0	67
27	Tuning the Superstructure of Ultrahigh-Molecular-Weight Polyethylene/Low-Molecular-Weight Polyethylene Blend for Artificial Joint Application. ACS Applied Materials & Interfaces, 2012, 4, 1521-1529.	8.0	66
28	Wearable Polyethylene/Polyamide Composite Fabric for Passive Human Body Cooling. ACS Applied Materials & Interfaces, 2018, 10, 41637-41644.	8.0	65
29	Role of Ion–Dipole Interactions in Nucleation of Gamma Poly(vinylidene fluoride) in the Presence of Graphene Oxide during Melt Crystallization. Journal of Physical Chemistry B, 2012, 116, 14951-14960.	2.6	64
30	Role of surface chemical groups on carbon nanotubes in nucleation forÂpolymer crystallization: Interfacial interaction and steric effect. Polymer, 2013, 54, 6479-6488.	3.8	61
31	Strong and tough micro/nanostructured poly(lactic acid) by mimicking the multifunctional hierarchy of shell. Materials Horizons, 2014, 1, 546-552.	12.2	61
31 32	Strong and tough micro/nanostructured poly(lactic acid) by mimicking the multifunctional hierarchy of shell. Materials Horizons, 2014, 1, 546-552. Easy alignment and effective nucleation activity of ramie fibers in injectionâ€molded poly(lactic acid) biocomposites. Biopolymers, 2012, 97, 825-839.	12.2 2.4	61 60
	of shell. Materials Horizons, 2014, 1, 546-552. Easy alignment and effective nucleation activity of ramie fibers in injectionâ€molded poly(lactic acid)		
32	of shell. Materials Horizons, 2014, 1, 546-552. Easy alignment and effective nucleation activity of ramie fibers in injectionâ€molded poly(lactic acid) biocomposites. Biopolymers, 2012, 97, 825-839. Structural Basis for Unique Hierarchical Cylindrites Induced by Ultrahigh Shear Gradient in Single	2.4	60
32 33	of shell. Materials Horizons, 2014, 1, 546-552. Easy alignment and effective nucleation activity of ramie fibers in injectionâ€molded poly(lactic acid) biocomposites. Biopolymers, 2012, 97, 825-839. Structural Basis for Unique Hierarchical Cylindrites Induced by Ultrahigh Shear Gradient in Single Natural Fiber Reinforced Poly(lactic acid) Green Composites. Biomacromolecules, 2014, 15, 1676-1686. Evolution of Phase Morphology of Mixed Poly(<i>tert</i>	2.4 5.4	60 57

#	Article	IF	CITATIONS
37	Deformation-induced morphology evolution during uniaxial stretching of isotactic polypropylene: effect of temperature. Colloid and Polymer Science, 2012, 290, 261-274.	2.1	50
38	Toward Stronger Transcrystalline Layers in Poly(<scp>l</scp> -lactic acid)/Natural Fiber Biocomposites with the Aid of an Accelerator of Chain Mobility. Journal of Physical Chemistry B, 2014, 118, 812-823.	2.6	49
39	Polymorphic Extended-Chain and Folded-Chain Crystals in Poly(vinylidene fluoride) Achieved by Combination of High Pressure and Ion–Dipole Interaction. Macromolecules, 2015, 48, 8565-8573.	4.8	48
40	Nanodroplet formation and exclusive homogenously nucleated crystallization inÂconfined electrospun immiscible polymer blend fibers of polystyrene andÂpoly(ethylene oxide). Polymer, 2011, 52, 5397-5402.	3.8	46
41	Understanding Nonlinear Dielectric Properties in a Biaxially Oriented Poly(vinylidene fluoride) Film at Both Low and High Electric Fields. ACS Applied Materials & Interfaces, 2016, 8, 455-465.	8.0	46
42	Hydrophobic Graphene Oxide as a Promising Barrier of Water Vapor for Regenerated Cellulose Nanocomposite Films. ACS Omega, 2019, 4, 509-517.	3.5	46
43	Composite Poly(vinylidene fluoride)/Polystyrene Latex Particles for Confined Crystallization in 180 nm Nanospheres via Emulsifier-Free Batch Seeded Emulsion Polymerization. Macromolecules, 2014, 47, 2632-2644.	4.8	45
44	Suppressing the Skin–Core Structure of Injection-Molded Isotactic Polypropylene via Combination of an in situ Microfibrillar Network and an Interfacial Compatibilizer. Journal of Physical Chemistry B, 2011, 115, 7497-7504.	2.6	44
45	Isothermal and nonisothermal crystallization of isotactic polypropylene/graphene oxide nanosheet nanocomposites. Journal of Polymer Research, 2012, 19, 1.	2.4	44
46	In Situ Nanofibrillar Networks Composed of Densely Oriented Polylactide Crystals as Efficient Reinforcement and Promising Barrier Wall for Fully Biodegradable Poly(butylene succinate) Composite Films. ACS Sustainable Chemistry and Engineering, 2016, 4, 2887-2897.	6.7	43
47	Enhanced Dielectric and Ferroelectric Properties of Poly(vinylidene fluoride) through Annealing Oriented Crystallites under High Pressure. Macromolecules, 2022, 55, 2014-2027.	4.8	42
48	Non-isothermal crystallization of poly(L-lactide) (PLLA) under quiescent and steady shear conditions. Chinese Journal of Polymer Science (English Edition), 2010, 28, 357-366.	3.8	41
49	Surface nucleation-induced fluoropolymer Janus nanoparticles via emulsifier-free batch-seeded emulsion polymerization. Soft Matter, 2011, 7, 11187.	2.7	39
50	Preferential formation of stereocomplex in high-molecular-weight polylactic acid racemic blend induced by carbon nanotubes. Polymer, 2016, 105, 167-171.	3.8	39
51	Core-shell nanoparticles toughened polylactide with excellent transparency and stiffness-toughness balance. Composites Science and Technology, 2018, 164, 168-177.	7.8	39
52	Can Relaxor Ferroelectric Behavior Be Realized for Poly(vinylidene) Tj ETQq0 0 0 rgBT /Overlock 10 Tf 50 147 Td Units in PVDF Crystals?. Macromolecules, 2018, 51, 5460-5472.	(fluoride-< 4.8	i>co-chlo 38
53	Multiple stage crystallization of gamma phase poly(vinylidene fluoride) induced by ion-dipole interaction as revealed by time-resolved FTIR and two-dimensional correlation analysis. Polymer, 2014, 55, 4765-4775.	3.8	37
54	Phase assembly-induced transition of three dimensional nanofibril- to sheet-networks in porous cellulose with tunable properties. Cellulose, 2014, 21, 383-394.	4.9	36

#	Article	IF	CITATIONS
55	Effects of Rigid Amorphous Fraction and Lamellar Crystal Orientation on Electrical Insulation of Poly(ethylene terephthalate) Films. Macromolecules, 2020, 53, 3967-3977.	4.8	34
56	Ultrathin, flexible and sandwich-structured PHBV/silver nanowire films for high-efficiency electromagnetic interference shielding. Journal of Materials Chemistry C, 2021, 9, 3307-3315.	5.5	34
57	The Role of Melt Memory and Template Effect in Complete Stereocomplex Crystallization and Phase Morphology of Polylactides. Crystal Growth and Design, 2018, 18, 1613-1621.	3.0	32
58	Toward faster degradation for natural fiber reinforced poly(lactic acid) biocomposites by enhancing the hydrolysis-induced surface erosion. Journal of Polymer Research, 2014, 21, 1.	2.4	31
59	Biodegradable poly(lactic acid)/hydroxyl apatite 3D porous scaffolds using high-pressure molding and salt leaching. Journal of Materials Science, 2014, 49, 1648-1658.	3.7	31
60	Layer structure by shear-induced crystallization and thermal mechanical properties of injection-molded poly(l-lactide) with nucleating agents. Polymer, 2017, 110, 196-210.	3.8	30
61	Stretching-Induced Relaxor Ferroelectric Behavior in a Poly(vinylidene) Tj ETQq1 1 0.784314 rgBT /Overlock 10 Tf Macromolecules, 2017, 50, 7646-7656.	50 507 To 4.8	d (fluoride- <i 30</i
62	An efficient, food contact accelerator for stereocomplexation of high-molecular-weight poly() Tj ETQq0 0 0 rgBT /	Oyerlock :	10 Tf 50 462
63	Constructing robust chain entanglement network, well-defined nanosized crystals and highly aligned graphene oxide nanosheets: Towards strong, ductile and high barrier Poly(lactic acid) nanocomposite films for green packaging. Composites Part B: Engineering, 2021, 222, 109048.	12.0	29
64	Inducing Stereocomplex Crystals by Template Effect of Residual Stereocomplex Crystals during Thermal Annealing of Injection-Molded Polylactide. Industrial & Engineering Chemistry Research, 2016, 55, 10896-10905.	3.7	28
65	Morphology and mechanical properties of poly (phenylene sulfide)/isotactic polypropylene in situ microfibrillar blends. Polymer Engineering and Science, 2005, 45, 1303-1311.	3.1	26
66	Gradient Structure of Crystalline Morphology in Injection-Molded Polylactide Parts Tuned by Oscillation Shear Flow and Its Influence on Thermomechanical Performance. Industrial & Engineering Chemistry Research, 2017, 56, 6295-6306.	3.7	25
67	Natural cellulose supported carbon nanotubes and Fe3O4 NPs as the efficient peroxydisulfate activator for the removal of bisphenol A: An enhanced non-radical oxidation process. Journal of Hazardous Materials, 2022, 423, 127054.	12.4	25
68	Biomimetic Nanofibrillation in Two-Component Biopolymer Blends with Structural Analogs to Spider Silk. Scientific Reports, 2016, 6, 34572.	3.3	24
69	Recyclability of In Situ Microfibrillar Poly(ethylene terephthalate)/High-Density Polyethylene Blends. Macromolecular Materials and Engineering, 2007, 292, 362-372.	3.6	23
70	Simultaneous Preparation and Dispersion of Regenerated Cellulose Nanoparticles Using a Facile Protocol of Dissolution–Gelation–Isolation–Melt Extrusion. ACS Sustainable Chemistry and Engineering, 2016, 4, 2470-2478.	6.7	23
71	Effect of ion-dipole interaction on the formation of polar extended-chain crystals in high pressure-crystallized poly(vinylidene fluoride). Polymer, 2018, 158, 204-212.	3.8	23
72	Superhydrophobic, Self-Cleaning, and Robust Properties of Oriented Polylactide Imparted by Surface Structuring. ACS Sustainable Chemistry and Engineering, 2021, 9, 6296-6304.	6.7	21

#	Article	IF	CITATIONS
73	Shear induced crystallization of poly(L-lactide) and poly(ethylene glycol) (PLLA-PEG-PLLA) copolymers with different block length. Journal of Polymer Research, 2011, 18, 675-680.	2.4	20
74	Realization of ultra-high barrier to water vapor by 3D-interconnection of super-hydrophobic graphene layers in polylactide films. Journal of Materials Chemistry A, 2017, 5, 14377-14386.	10.3	20
75	Promoting Interfacial Transcrystallization in Polylactide/Ramie Fiber Composites by Utilizing Stereocomplex Crystals. ACS Sustainable Chemistry and Engineering, 2017, 5, 7128-7136.	6.7	20
76	Ultra-high mechanical properties of porous composites based on regenerated cellulose and cross-linked poly(ethylene glycol). Carbohydrate Polymers, 2018, 179, 244-251.	10.2	20
77	Effective electromagnetic interference shielding properties of micro-truss structured CNT/Epoxy composites fabricated based on visible light processing. Composites Science and Technology, 2022, 221, 109296.	7.8	20
78	Formation of Poly(L-lactide) mesophase and its chain mobility dependent kinetics. Chinese Journal of Polymer Science (English Edition), 2014, 32, 1176-1187.	3.8	19
79	Nucleation Ability of Thermally Reduced Graphene Oxide for Polylactide: Role of Size and Structural Integrity. Journal of Physical Chemistry B, 2015, 119, 4777-4787.	2.6	18
80	A nacre-mimetic superstructure of poly(butylene succinate) structured by using an intense shear flow and ramie fiber as a promising strategy for simultaneous reinforcement and toughening. Journal of Materials Chemistry A, 2017, 5, 22697-22707.	10.3	18
81	Largely enhanced mechanical performance of poly(butylene succinate) multiple system <i>via</i> shear stress-induced orientation of the hierarchical structure. Journal of Materials Chemistry A, 2018, 6, 13373-13385.	10.3	18
82	Crystallization of linear low density polyethylene on an in situ oriented isotactic polypropylene substrate manipulated by an extensional flow field. CrystEngComm, 2016, 18, 77-91.	2.6	17
83	Robust hydrogel of regenerated cellulose by chemical crosslinking coupled with polyacrylamide network. Journal of Applied Polymer Science, 2019, 136, 47811.	2.6	17
84	Structure and Properties of All-Cellulose Composites Prepared by Controlling the Dissolution Temperature of a NaOH/Urea Solvent. Industrial & Engineering Chemistry Research, 2020, 59, 10428-10435.	3.7	17
85	Rapid Melt Crystallization of Bisphenol-A Polycarbonate Jointly Induced by Pressure and Flow. Macromolecules, 2021, 54, 2383-2393.	4.8	17
86	Non-isothermal crystallization of ethylene-vinyl acetate copolymer containing a high weight fraction of graphene nanosheets and carbon nanotubes. Chinese Journal of Polymer Science (English Edition), 2012, 30, 879-892.	3.8	16
87	Highly Efficient Three-Dimensional Gas Barrier Network for Biodegradable Nanocomposite Films at Extremely Low Loading Levels of Graphene Oxide Nanosheets. Industrial & Engineering Chemistry Research, 2020, 59, 5818-5827.	3.7	16
88	The crystallization behavior of biodegradable poly(butylene succinate) in the presence of organically modified clay with a wide range of loadings. Chinese Journal of Polymer Science (English Edition), 2015, 33, 576-586.	3.8	15
89	Robust cellulose nanocomposite films based on covalently cross-linked network with effective resistance to water permeability. Carbohydrate Polymers, 2019, 211, 237-248.	10.2	15
90	Innovative enhancement of gas barrier properties of biodegradable poly(butylene succinate) nanocomposite films by introducing confined crystals. RSC Advances, 2016, 6, 2530-2536.	3.6	14

#	Article	IF	CITATIONS
91	Morphology and film performance of phthalate-free plasticized poly(vinyl chloride) composite particles via the graft copolymerization of acrylate swelling flower-like latex particles. RSC Advances, 2015, 5, 40076-40087.	3.6	13
92	How Chain Intermixing Dictates the Polymorphism of PVDF in Poly(vinylidene) Tj ETQq0 0 0 rgBT /Overlock 10 Tf Core–Shell Particles and Latex Blend. Polymers, 2017, 9, 448.	50 707 Td 4.5	l (fluoride)/Po 13
93	Nondestructive and Quantitative Characterization of Bulk Injection-Molded Polylactide Using SAXS Microtomography. Macromolecules, 2020, 53, 6498-6509.	4.8	13
94	Coupling effect of pressure and flow fields on the crystallization of Poly(vinylidene) Tj ETQq0 0 0 rgBT /Overlock	10 Tf 50 62 3.8	22 Td (fluorio
95	Humidity sensitive cellulose composite aerogels with enhanced mechanical performance. Cellulose, 2020, 27, 6287-6297.	4.9	13
96	Structure Evolution upon Uniaxial Drawing Skin―and Core‣ayers of Injectionâ€Molded Isotactic Polypropylene by <i>In Situ</i> Synchrotron Xâ€ray Scattering. Journal of Polymer Science, Part B: Polymer Physics, 2013, 51, 1618-1631.	2.1	12
97	Temperature dependence of molecular conformation in uniaxially deformed isotactic polypropylene investigated by combination of polarized FTIR spectroscopy and 2D correlation analysis. Journal of Polymer Science, Part B: Polymer Physics, 2015, 53, 673-684.	2.1	12
98	Tuning wettability and mechanical property of polylactide composite films with in-situ nanofibrils of poly(butylene adipate-co-terephthalate). Composites Communications, 2020, 22, 100515.	6.3	12
99	Durably Ductile, Transparent Polystyrene Based on Extensional Stress-Induced Rejuvenation Stabilized by Styrene–Butadiene Block Copolymer Nanofibrils. ACS Macro Letters, 2021, 10, 71-77.	4.8	12
100	The coupling effect of cellulose nanocrystal and strong shear field achieved the strength and toughness balance of Polylactide. International Journal of Biological Macromolecules, 2022, 207, 927-940.	7.5	12
101	Crystallization behavior and morphology of one-step reaction compatibilized microfibrillar reinforced isotactic polypropylene/poly(ethylene terephthalate) (iPP/PET) blends. Chinese Journal of Polymer Science (English Edition), 2011, 29, 540-551.	3.8	11
102	Injection-molded hydroxyapatite/polyethylene bone-analogue biocomposites via structure manipulation. Journal of Materials Chemistry B, 2015, 3, 7585-7593.	5.8	11
103	Towards transparent <scp>PMMA/S</scp> i <scp>O</scp> ₂ nanocomposites with promising scratchâ€resistance by manipulation of <scp>SiO</scp> ₂ aggregation followed by <i>in situ</i> polymerization. Journal of Applied Polymer Science, 2017, 134, .	2.6	11
104	Constructing Sandwich-Architectured Poly(<scp>l</scp> -lactide)/High-Melting-Point Poly(<scp>l</scp> -lactide) Nonwoven Fabrics: Toward Heat-Resistant Poly(<scp>l</scp> -lactide) Barrier Biocomposites with Full Biodegradability. ACS Applied Bio Materials, 2019, 2, 1357-1367.	4.6	11
105	Robust propylene-ethylene copolymer/polypropylene films: Extensional stress-induced orientation realized at low temperature processing. Polymer, 2020, 206, 122848.	3.8	11
106	Structural regulation of poly(urea-formaldehyde) microcapsules containing lube base oil and their thermal properties. Progress in Organic Coatings, 2021, 150, 105990.	3.9	11
107	Coupling Effect of Mechanical and Thermal Rejuvenation for Polystyrene: Toward High Performance of Stiffness, Ductility, and Transparency. Macromolecules, 2021, 54, 8875-8885.	4.8	11

Polarity-induced ferroelectric crystalline phase in electrospun fibers of poly(vinylidene) Tj ETQq0 0 0 rgBT /Overlock $\frac{10}{2.6}$ Tf 50 $\frac{62}{10}$ Td (fluor $\frac{10}{10}$ Td $\frac{10}{10}$ Td (fluor $\frac{10}{10}$ Td $\frac{10}{10}$ Td (fluor $\frac{10}{10}$ Td $\frac{10}{10}$ Td $\frac{10}{10}$ Td (fluor $\frac{10}{10}$ Td $\frac{10}{10}$ Td $\frac{10}{10}$ Td (fluor $\frac{10}{10}$ Td $\frac{10}{10}$

#	Article	IF	CITATIONS
109	Simultaneously improving stiffness, toughness, and heat deflection resistance of polylactide using the strategy of orientation crystallization amplified by interfacial interactions. Polymer Crystallization, 2018, 1, e10004.	0.8	10
110	How the Aggregates Determine Bound Rubber Models in Silicone Rubber? A Contrast Matching Neutron Scattering Study. Chinese Journal of Polymer Science (English Edition), 2021, 39, 365-376.	3.8	10
111	Morphology and Crystallization Behavior of Compatibilized Isotactic Polypropylene/Poly(butylene) Tj ETQq1 1 507-513.	0.784314 r 1.9	gBT /Overloci 9
112	In-situ synchrotron x-ray scattering study on isothermal crystallization of ethylene-vinyl acetate copolymers containing a high weight fraction of carbon nanotubes and graphene nanosheets. Journal of Polymer Research, 2012, 19, 1.	2.4	9
113	Rapid preparation and continuous processing of polylactide stereocomplex crystallite below its melting point. Polymer Bulletin, 2019, 76, 3371-3385.	3.3	9
114	Robust, transparent films of propyleneâ^ ethylene copolymer through isotropic-orientation transition at low temperature accelerated by adjustment of ethylene contents. Polymer, 2020, 187, 122099.	3.8	9
115	Structure of polyamide 6/poly(ethylene terephthalate) blends under high cooling rate and shear stress and their moisture-sensitive properties. Polymer, 2020, 203, 122817.	3.8	9
116	Superior Ductile and High-barrier Poly(lactic acid) Films by Constructing Oriented Nanocrystals as Efficient Reinforcement of Chain Entanglement Network and Promising Barrier Wall. Chinese Journal of Polymer Science (English Edition), 2022, 40, 1201-1212.	3.8	9
117	Raspberry-like morphology of polyvinyl chloride/zinc oxide nanoparticles induced by surface interaction and formation of nanoporous foam. RSC Advances, 2015, 5, 36845-36857.	3.6	8
118	Confined crystallization of poly(butylene succinate) intercalated into organoclays: role of surfactant polarity. RSC Advances, 2016, 6, 68072-68080.	3.6	7
119	Role of lamellar thickening in thick lamellae formation in isotactic polypropylene when crystallizing under flow and pressure. Polymer, 2019, 179, 121641.	3.8	7
120	Polylactide porous biocomposites with high heat resistance by utilizing cellulose template-directed construction. Cellulose, 2020, 27, 3805-3819.	4.9	7
121	Imparting Gradient and Oriented Characters to Cocontinuous Structure for Improving Integrated Performance. Macromolecular Chemistry and Physics, 2021, 222, 2100012.	2.2	7
122	Enhanced melt-recrystallization process of propylene-ethylene copolymer during the uniaxial stretching with the aid of isotactic polypropylene. Polymer, 2022, 239, 124443.	3.8	7
123	Imparting Cellulose Acetate Films with Hydrophobicity, High Transparency, and Self-Cleaning Function by Constructing a Slippery Liquid-Infused Porous Surface. Industrial & Engineering Chemistry Research, 2022, 61, 7962-7970.	3.7	7
124	Oriented Polar Crystals in Poly(Vinylidene Fluoride) Produced by Simultaneously Applying Pressure and Flow. Macromolecular Chemistry and Physics, 2018, 219, 1800299.	2.2	6
125	Interconnected Microdomain Structure of a Cross-Linked Cellulose Nanocomposite Revealed by Micro-Raman Imaging and Its Influence on Water Permeability of a Film. Biomacromolecules, 2019, 20, 2754-2762.	5.4	6
126	Shear Enhanced Crystallization and Tensile Behaviors of Oscillation Shear Injection Molded Poly(ethylene terephthalate). Journal of Macromolecular Science - Physics, 2010, 50, 383-397.	1.0	5

#	Article	IF	CITATIONS
127	Nonisothermal crystallization of isotactic polypropylene in carbon nanotube networks. Journal of Thermoplastic Composite Materials, 2016, 29, 1352-1368.	4.2	5
128	Understanding the Morphological and Structural Evolution of α- and γ-Poly(vinylidene fluoride) During High Temperature Uniaxial Stretching by In Situ Synchrotron X-ray Scattering. Industrial & Engineering Chemistry Research, 2020, 59, 18567-18578.	3.7	5
129	Spatial dependence of ordering process in bulk materials of polylactide and its multiple system during hygrothermal aging. Polymer Degradation and Stability, 2020, 174, 109107.	5.8	5
130	Industrially Scalable Approach to Nanohybrid Shish Kebabs by In Situ Nanofibrillation of Isotactic Poly(propylene). Macromolecular Chemistry and Physics, 2015, 216, 2241-2248.	2.2	4
131	Unique Banded Cylindrites of Polyoxymethylene/Poly(butylene succinate) Blends Induced by Interfacial Shear. ACS Applied Polymer Materials, 2019, 1, 2741-2750.	4.4	4
132	Tailored Surface Porosity of Polyethylene-Based Co-continuous Structures for Moving Bed Biofilm Reactor Carriers. ACS Applied Polymer Materials, 2020, 2, 3226-3233.	4.4	4
133	Tribological Properties of Self-Lubricating Thermoplastic Polyurethane/Oil-Loaded Microcapsule Composites Based on Melt Processing. Industrial & Engineering Chemistry Research, 2021, 60, 16023-16031.	3.7	4
134	Internal nanostructure and structure-processing relationship of injection molded poly (butylene) Tj ETQq0 0 0 rg	BT /Qverlo	ck ₄ 10 Tf 50 4

135	Effects of Solvents on Stereocomplex Crystallization of Highâ€Molecularâ€Weight Polylactic Acid Racemic Blends in the Presence of Carbon Nanotubes. Macromolecular Chemistry and Physics, 2017, 218, 1700292.	2.2	3
136	Tribological performances and self-lubricating mechanism of monomer casting nylon-6 composite coatings containing lube base oil-loaded microcapsules. Progress in Organic Coatings, 2021, 160, 106528.	3.9	3
137	Quantitative Investigation on Structural Evolution of Co-continuous Phase under Shear Flow. Chinese Journal of Polymer Science (English Edition), 2022, 40, 593-601.	3.8	3
138	Strong and ductile poly(butylene adipateâ€ <i>co</i> â€ŧerephthalate) biocomposites fabricated by oscillation shear injection molding. Journal of Applied Polymer Science, 2016, 133, .	2.6	2
139	Promoted Formation of $\hat{l}\pm$ Crystals in the Polymorph Selection of Syndiotatic Polystyrene under the Coupling of Pressure, Flow, and Temperature. Macromolecules, 2022, 55, 5094-5103.	4.8	2
140	Interfacial Banded Transcrystallization of Polyoxymethylene/Poly(butylene succinate) Blends Induced by the Polyamide 6 Fiber. Chinese Journal of Polymer Science (English Edition), 2022, 40, 394-402.	3.8	1
141	Crystallization of isotactic polypropylene inside dense networks of carbon nanofillers. Journal of Applied Polymer Science, 2014, 131, .	2.6	0