
Christoph Bert

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6481909/publications.pdf Version: 2024-02-01

<u> Chdistodh Redt</u>

#	Article	IF	CITATIONS
1	Prerequisites for the clinical implementation of aÂmarkerless SGRT-only workflow for the treatment of breast cancer patients. Strahlentherapie Und Onkologie, 2023, 199, 22-29.	2.0	7
2	Risk analysis for radiotherapy at the Universitäsklinikum Erlangen. Zeitschrift Fur Medizinische Physik, 2022, , .	1.5	2
3	AAPM Task Group Report 290: Respiratory motion management for particle therapy. Medical Physics, 2022, 49, .	3.0	30
4	Influence and compensation of patient motion in electromagnetic tracking based quality assurance in interstitial brachytherapy of the breast. Medical Physics, 2022, 49, 2652-2662.	3.0	4
5	The 3rd ESTRO-EFOMP core curriculum for medical physics experts in radiotherapy. Radiotherapy and Oncology, 2022, 170, 89-94.	0.6	11
6	QAMaster: A new software framework for phantomâ€based computed tomography quality assurance. Journal of Applied Clinical Medical Physics, 2022, 23, e13588.	1.9	9
7	Transient Enlargement in Meningiomas Treated with Stereotactic Radiotherapy. Cancers, 2022, 14, 1547.	3.7	3
8	First clinical experience with aÂnovel, mobile cone-beam CT system for treatment quality assurance in brachytherapy. Strahlentherapie Und Onkologie, 2022, 198, 573-581.	2.0	9
9	Technical evaluation of the coneâ€beam computed tomography imaging performance of a novel, mobile, gantryâ€based Xâ€ray system for brachytherapy. Journal of Applied Clinical Medical Physics, 2022, 23, .	1.9	16
10	ESTRO-ACROP guideline on surface guided radiation therapy. Radiotherapy and Oncology, 2022, 173, 188-196.	0.6	32
11	Permanent LDR prostate brachytherapy: Comprehensive characterization of seed-dynamics within the prostate on a seed-only level. Brachytherapy, 2022, 21, 635-646.	0.5	2
12	Quality assurance of a breathing controlled four-dimensional computed tomography algorithm. Physics and Imaging in Radiation Oncology, 2022, 23, 85-91.	2.9	6
13	Implementation of aÂdedicated 1.5â€⊤ MR scanner for radiotherapy treatment planning featuring aÂnovel high-channel coil setup for brain imaging in treatment position. Strahlentherapie Und Onkologie, 2021, 197, 246-256.	2.0	13
14	Comparison of intelligent 4D CT sequence scanning and conventional spiral 4D CT: a first comprehensive phantom study. Physics in Medicine and Biology, 2021, 66, 015004.	3.0	9
15	Quality assurance for dynamic tumor tracking. Zeitschrift Fur Medizinische Physik, 2021, 31, 388-393.	1.5	1
16	Low- vs. high-dose radiotherapy in Graves' ophthalmopathy: aÂretrospective comparison of long-term results. Strahlentherapie Und Onkologie, 2021, 197, 885-894.	2.0	3
17	Education, training and registration of Medical Physics Experts across Europe. Physica Medica, 2021, 85, 129-136.	0.7	6
18	A generic curriculum development model for the biomedical physics component of the educational and training programmes of the non-physics healthcare professions. Physica Medica, 2021, 85, 32-41.	0.7	0

#	Article	IF	CITATIONS
19	OC-0108 Impact of patient positioning on interstitial multicatheter HDR brachytherapy of the breast. Radiotherapy and Oncology, 2021, 158, S76.	0.6	0
20	PP-0146 Quality assurance of curved catheter paths in interstitial brachytherapy using a constructed phantom. Radiotherapy and Oncology, 2021, 158, S110-S111.	0.6	0
21	PO-1705 Evaluation of a markerless SGRT-only workflow for breast cancer patients. Radiotherapy and Oncology, 2021, 161, S1432.	0.6	0
22	OC-0301 Update of the ESTRO-EFOMP core curriculum for medical physics experts in radiotherapy. Radiotherapy and Oncology, 2021, 161, S207-S209.	0.6	0
23	Region of interest optimization for surface guided radiation therapy of breast cancer. Journal of Applied Clinical Medical Physics, 2021, 22, 152-160.	1.9	8
24	Reduction of Elective Radiotherapy Treatment Volume in Definitive Treatment of Locally Advanced Head and Neck Cancer—Comparison of a Prospective Trial with a Revised Simulated Contouring Approach. Journal of Clinical Medicine, 2021, 10, 4653.	2.4	1
25	First clinical evaluation of breathing controlled four-dimensional computed tomography imaging. Physics and Imaging in Radiation Oncology, 2021, 20, 56-61.	2.9	8
26	Dosimetry, Optimization and FMEA of Total Skin Electron Irradiation (TSEI). Zeitschrift Fur Medizinische Physik, 2021, , .	1.5	2
27	On PTV definition for glioblastoma based on fiber tracking of diffusion tensor imaging data. PLoS ONE, 2020, 15, e0227146.	2.5	6
28	Performance of Makerless Tracking for Gimbaled Dynamic Tumor Tracking. Zeitschrift Fur Medizinische Physik, 2020, 30, 96-103.	1.5	7
29	Recent advances in Surface Guided Radiation Therapy. Radiation Oncology, 2020, 15, 187.	2.7	71
30	FSRT vs. SRS in Brain Metastases—Differences in Local Control and Radiation Necrosis—A Volumetric Study. Frontiers in Oncology, 2020, 10, 559193.	2.8	29
31	Evaluation of the influence of susceptibility-induced magnetic field distortions on the precision of contouring intracranial organs at risk for stereotactic radiosurgery. Physics and Imaging in Radiation Oncology, 2020, 15, 91-97.	2.9	6
32	Adaptive radiotherapy and the dosimetric impact of inter- and intrafractional motion on the planning target volume for prostate cancer patients. Strahlentherapie Und Onkologie, 2020, 196, 647-656.	2.0	9
33	Magnetic resonance imaging for brain stereotactic radiotherapy. Strahlentherapie Und Onkologie, 2020, 196, 444-456.	2.0	43
34	The Distribution of Pelvic Nodal Metastases in Prostate Cancer Reveals Potential to Advance and Personalize Pelvic Radiotherapy. Frontiers in Oncology, 2020, 10, 590722.	2.8	5
35	Volumetric Regression in Brain Metastases After Stereotactic Radiotherapy: Time Course, Predictors, and Significance. Frontiers in Oncology, 2020, 10, 590980.	2.8	13
36	Dense feature-based motion estimation in MV fluoroscopy during dynamic tumor tracking treatment: preliminary study on reduced aperture and partial occlusion handling. Physics in Medicine and Biology, 2020, 65, 245039.	3.0	0

#	Article	IF	CITATIONS
37	Investigation of Feature-Based Nonrigid Image Registration Using Gaussian Process. Informatik Aktuell, 2020, , 156-162.	0.6	1
38	PO-1750: Comparison of MRI coils and RT-positioning systems for optimal MRI scanning in SRS cases. Radiotherapy and Oncology, 2020, 152, S972-S973.	0.6	0
39	PO-1904: ROI optimisation for surface guided radiation therapy. Radiotherapy and Oncology, 2020, 152, S1062-S1063.	0.6	0
40	ls adaptive treatment planning in multi-catheter interstitial breast brachytherapy necessary?. Radiotherapy and Oncology, 2019, 141, 304-311.	0.6	7
41	Method for a motion model based automated 4D dose calculation. Physics in Medicine and Biology, 2019, 64, 225002.	3.0	2
42	Error detection using an electromagnetic tracking system in multi-catheter breast interstitial brachytherapy. Physics in Medicine and Biology, 2019, 64, 205018.	3.0	10
43	PO-1048 Variability in catheter reconstruction for multi-catheter interstitial brachytherapy. Radiotherapy and Oncology, 2019, 133, S582.	0.6	Ο
44	EP-1719 Automated data processing and BigData in radiation therapy. Radiotherapy and Oncology, 2019, 133, S926-S927.	0.6	0
45	EP-1959 Performance of Marker-less Tracking for Gimbaled Dynamic Tumor Tracking. Radiotherapy and Oncology, 2019, 133, S1068-S1069.	0.6	Ο
46	OC-0075 Error detection using an electromagnetic tracking system in multicatheter interstitial brachytherapy. Radiotherapy and Oncology, 2019, 133, S35.	0.6	1
47	Accumulation of the delivered treatment dose in volumetric modulated arc therapy with breathâ€hold for pancreatic cancer patients based on daily cone beam computed tomography images with limited fieldâ€ofâ€view. Medical Physics, 2019, 46, 2969-2977.	3.0	17
48	Choosing a reference phase for a dynamic tumor tracking treatment: A new degree of freedom?. Medical Physics, 2019, 46, 3371-3377.	3.0	1
49	Impact of inter- and intra-observer variabilities of catheter reconstruction on multi-catheter interstitial brachytherapy of breast cancer patients. Radiotherapy and Oncology, 2019, 135, 25-32.	0.6	5
50	Paragangliomas of the Head and Neck. American Journal of Clinical Oncology: Cancer Clinical Trials, 2019, 42, 818-823.	1.3	7
51	Estimation of inter-fractional variations in interstitial multi-catheter breast brachytherapy using a hybrid treatment delivery system. Radiotherapy and Oncology, 2019, 141, 312-320.	0.6	7
52	Penile bulb sparing in prostate cancer radiotherapy. Strahlentherapie Und Onkologie, 2019, 195, 153-163.	2.0	5
53	Respiratory Deformation Estimation in X-Ray-Guided IMRT Using a Bilinear Model. Informatik Aktuell, 2019, , 315-320.	0.6	0
54	Decoupling Respiratory and Angular Variation in Rotational X-ray Scans Using a Prior Bilinear Model. Lecture Notes in Computer Science, 2019, , 583-594.	1.3	1

#	Article	IF	CITATIONS
55	Dose calculation and verification of the Vero gimbal tracking treatment delivery. Physics in Medicine and Biology, 2018, 63, 035043.	3.0	7
56	Assessment of the implant geometry in fractionated interstitial HDR breast brachytherapy using an electromagnetic tracking system. Brachytherapy, 2018, 17, 94-102.	0.5	15
57	Introduction of a hybrid treatment delivery system used for quality assurance in multi-catheter interstitial brachytherapy. Physics in Medicine and Biology, 2018, 63, 095008.	3.0	14
58	Noninvasive cardiac arrhythmia ablation with particle beams. Medical Physics, 2018, 45, e1024-e1035.	3.0	16
59	Performance of gimbal-based dynamic tumor tracking for treating liver carcinoma. Radiation Oncology, 2018, 13, 242.	2.7	7
60	Clinical implementations of 4D pencil beam scanned particle therapy: Report on the 4D treatment planning workshop 2016 and 2017. Physica Medica, 2018, 54, 121-130.	0.7	34
61	Advanced Multimodal Methods for Cranial Pseudo-CT Generation Validated by IMRT and VMAT Radiation Therapy Plans. International Journal of Radiation Oncology Biology Physics, 2018, 102, 792-800.	0.8	6
62	OC-0171: Quality assurance for interstitial brachytherapy using an EMT system integrated into an afterloader. Radiotherapy and Oncology, 2018, 127, S89.	0.6	0
63	EP-2030: Examination of the automatic fiducial marker detection on the Vero system. Radiotherapy and Oncology, 2018, 127, S1109.	0.6	Ο
64	EP-2142: Implementation of registration quality assurance. Radiotherapy and Oncology, 2018, 127, S1181-S1182.	0.6	0
65	Union of light ion therapy centers in Europe (ULICE EC FP7) – Objectives and achievements of joint research activities. Radiotherapy and Oncology, 2018, 128, 83-100.	0.6	6
66	Quality assurance guidelines for superficial hyperthermia clinical trials: I. Clinical requirements. International Journal of Hyperthermia, 2017, 33, 471-482.	2.5	86
67	Influence of patient mispositioning on SAR distribution and simulated temperature in regional deep hyperthermia. Physics in Medicine and Biology, 2017, 62, 4929-4945.	3.0	4
68	Effect of VERO panâ€ŧilt motion on the dose distribution. Journal of Applied Clinical Medical Physics, 2017, 18, 144-154.	1.9	14
69	Examination of a deformable motion model for respiratory movements and 4D dose calculations using different driving surrogates. Medical Physics, 2017, 44, 2066-2076.	3.0	18
70	Regional deep hyperthermia: impact of observer variability in CT-based manual tissue segmentation on simulated temperature distribution. Physics in Medicine and Biology, 2017, 62, 4479-4495.	3.0	6
71	On the use of multi-dimensional scaling and electromagnetic tracking in high dose rate brachytherapy. Physics in Medicine and Biology, 2017, 62, 7959-7980.	3.0	9
72	ECG-based 4D-dose reconstruction of cardiac arrhythmia ablation with carbon ion beams: application in a porcine model. Physics in Medicine and Biology, 2017, 62, 6869-6883.	3.0	14

#	Article	IF	CITATIONS
73	OC-0179: Dosimetric impact of errors in HDR-iBT of the breast using a catheter tracking method. Radiotherapy and Oncology, 2017, 123, S91-S92.	0.6	0
74	OC-0277: Assessment of the implant geometry in interstitial brachytherapy by a hybrid tracking system. Radiotherapy and Oncology, 2017, 123, S143-S144.	0.6	2
75	EP-1541: 4D dose reconstruction using a standard TPS in combination with a respiratory motion model. Radiotherapy and Oncology, 2017, 123, S828-S829.	0.6	1
76	Automation of radiation treatment planning. Strahlentherapie Und Onkologie, 2017, 193, 656-665.	2.0	26
77	On the use of particle filters for electromagnetic tracking in high dose rate brachytherapy. Physics in Medicine and Biology, 2017, 62, 7617-7640.	3.0	7
78	Immobilization for carbon ion beam ablation of cardiac structures in a porcine model. Physica Medica, 2017, 43, 134-139.	0.7	4
79	A kernel-based framework for intra-fractional respiratory motion estimation in radiation therapy. , 2017, , .		6
80	Optimization of Single Voxel MR Spectroscopy Sequence Parameters and Data Analysis Methods for Thermometry in Deep Hyperthermia Treatments. Technology in Cancer Research and Treatment, 2017, 16, 470-481.	1.9	6
81	Hypofractionated Irradiation Has Immune Stimulatory Potential and Induces a Timely Restricted Infiltration of Immune Cells in Colon Cancer Tumors. Frontiers in Immunology, 2017, 8, 231.	4.8	87
82	Management of organ motion in scanned ion beam therapy. Radiation Oncology, 2017, 12, 170.	2.7	10
83	Electromagnetic tracking (<scp>EMT</scp>) technology for improved treatment quality assurance in interstitial brachytherapy. Journal of Applied Clinical Medical Physics, 2017, 18, 211-222.	1.9	31
84	Electromagnetic tracking for treatment verification in interstitial brachytherapy. Journal of Contemporary Brachytherapy, 2016, 5, 448-453.	0.9	29
85	Treatment Planning Studies in Patient Data With Scanned Carbon Ion Beams for Catheterâ€Free Ablation of Atrial Fibrillation. Journal of Cardiovascular Electrophysiology, 2016, 27, 335-344.	1.7	25
86	Feasibility Study on Cardiac Arrhythmia Ablation Using High-Energy Heavy Ion Beams. Scientific Reports, 2016, 6, 38895.	3.3	92
87	Dosimetric accuracy of the coneâ€beam CTâ€based treatment planning of the Vero system: a phantom study. Journal of Applied Clinical Medical Physics, 2016, 17, 106-113.	1.9	4
88	Infrared camera based thermometry for quality assurance of superficial hyperthermia applicators. Physics in Medicine and Biology, 2016, 61, 2646-2664.	3.0	11
89	OC-0251: Electromagnetic tracking for error detection in interstitial brachytherapy. Radiotherapy and Oncology, 2016, 119, S115.	0.6	1
90	Assessment of the Implant Geometry in Fractionated Interstitial HDR Breast Brachytherapy. Brachytherapy, 2016, 15, S39-S40.	0.5	4

#	Article	IF	CITATIONS
91	Novel technique for high-precision stereotactic irradiation of mouse brains. Strahlentherapie Und Onkologie, 2016, 192, 806-814.	2.0	16
92	Required transition from research to clinical application: Report on the 4D treatment planning workshops 2014 and 2015. Physica Medica, 2016, 32, 874-882.	0.7	34
93	Differences in Dose Coverage and Uniformity in Fractionated High-Dose-Rate Interstitial Breast Brachytherapy Based on EMT Measurements. International Journal of Radiation Oncology Biology Physics, 2016, 96, S169.	0.8	2
94	Experimental investigation of irregular motion impact on 4D PET-based particle therapy monitoring. Physics in Medicine and Biology, 2016, 61, N2O-N34.	3.0	6
95	Impact of fractionation and number of fields on dose homogeneity for intra-fractionally moving lung tumors using scanned carbon ion treatment. Radiotherapy and Oncology, 2016, 118, 498-503.	0.6	9
96	Scanned ion beam therapy for prostate carcinoma. Strahlentherapie Und Onkologie, 2016, 192, 118-126.	2.0	10
97	Real-Time Respiratory Motion Analysis Using 4-D Shape Priors. IEEE Transactions on Biomedical Engineering, 2016, 63, 485-495.	4.2	11
98	Technical Note: Radiation properties of tissue- and water-equivalent materials formulated using the stoichiometric analysis method in charged particle therapy. Medical Physics, 2015, 43, 308-313.	3.0	4
99	4D offline PET-based treatment verification in scanned ion beam therapy: a phantom study. Physics in Medicine and Biology, 2015, 60, 6227-6246.	3.0	4
100	Noncoplanar verification: a feasibility study using Philips' Pinnacle ³ treatment planning system. Journal of Applied Clinical Medical Physics, 2015, 16, 84-90.	1.9	1
101	First Steps Toward Ultrasound-Based Motion Compensation for Imaging and Therapy: Calibration with an Optical System and 4D PET Imaging. Frontiers in Oncology, 2015, 5, 258.	2.8	7
102	Treatment Parameters Optimization to Compensate for Interfractional Anatomy Variability and Intrafractional Tumor Motion. Frontiers in Oncology, 2015, 5, 291.	2.8	6
103	Treatment of arrhythmias by external charged particle beams: a Langendorff feasibility study. Biomedizinische Technik, 2015, 60, 147-56.	0.8	13
104	Implementation of an Analytical Model for Leakage Neutron Equivalent Dose in a Proton Radiotherapy Planning System. Cancers, 2015, 7, 427-438.	3.7	14
105	Robustness of target dose coverage to motion uncertainties for scanned carbon ion beam tracking therapy of moving tumors. Physics in Medicine and Biology, 2015, 60, 1717-1740.	3.0	17
106	DEGRO practical guidelines for radiotherapy of non-malignant disorders. Strahlentherapie Und Onkologie, 2015, 191, 701-709.	2.0	32
107	A novel concept for CT with fixed anodes (FACT): Medical imaging based on the feasibility of thermal load capacity. Physica Medica, 2015, 31, 425-434.	0.7	2
108	Ion therapy of prostate cancer: daily rectal dose reduction by application of spacer gel. Radiation Oncology, 2015, 10, 56.	2.7	17

#	Article	IF	CITATIONS
109	Atrioventricular Node Ablation in Langendorff-Perfused Porcine Hearts Using Carbon Ion Particle Therapy. Circulation: Arrhythmia and Electrophysiology, 2015, 8, 429-438.	4.8	41
110	SU-F-BRA-02: Electromagnetic Tracking in Brachytherapy as An Advanced Modality for Treatment Quality Assurance. Medical Physics, 2015, 42, 3533-3534.	3.0	2
111	SUâ€Câ€303â€06: Treatment Planning Study for Nonâ€Invasive Cardiac Arrhythmia Ablation with Scanned Carbon Ions in An Animal Model. Medical Physics, 2015, 42, 3198-3198.	3.0	0
112	WE-AB-303-11: Verification of a Deformable 4DCT Motion Model for Lung Tumor Tracking Using Different Driving Surrogates. Medical Physics, 2015, 42, 3658-3658.	3.0	0
113	SUâ€Eâ€Tâ€663: Radiation Properties of a Waterâ€Equivalent Material Formulated Using the Stoichiometric Analysis Method in Heavy Charged Particle Therapy. Medical Physics, 2015, 42, 3489-3489.	3.0	0
114	Multigating, a 4D Optimized Beam Tracking in Scanned Ion Beam Therapy. Technology in Cancer Research and Treatment, 2014, 13, 497-504.	1.9	20
115	Commissioning of an Integrated Platform for Time-Resolved Treatment Delivery in Scanned Ion Beam Therapy by Means of Optical Motion Monitoring. Technology in Cancer Research and Treatment, 2014, 13, 517-528.	1.9	13
116	Quantification of an External Motion Surrogate for Quality Assurance in Lung Cancer Radiation Therapy. BioMed Research International, 2014, 2014, 1-8.	1.9	4
117	Residual motion mitigation in scanned carbon ion beam therapy of liver tumors using enlarged pencil beam overlap. Radiotherapy and Oncology, 2014, 113, 290-295.	0.6	31
118	Ion beam tracking using ultrasound motion detection. Medical Physics, 2014, 41, 041708.	3.0	30
119	4D optimization of scanned ion beam tracking therapy for moving tumors. Physics in Medicine and Biology, 2014, 59, 3431-3452.	3.0	32
120	Advances in 4D Treatment Planning for Scanned Particle Beam Therapy — Report of Dedicated Workshops. Technology in Cancer Research and Treatment, 2014, 13, 485-495.	1.9	14
121	Challenges of radiotherapy: Report on the 4D treatment planning workshop 2013. Physica Medica, 2014, 30, 809-815.	0.7	32
122	Four-Dimensional Patient Dose Reconstruction for Scanned Ion Beam Therapy of Moving Liver Tumors. International Journal of Radiation Oncology Biology Physics, 2014, 89, 175-181.	0.8	43
123	Ultrasound tracking for intra-fractional motion compensation in radiation therapy. Physica Medica, 2014, 30, 578-582.	0.7	32
124	Fast optimization and dose calculation in scanned ion beam therapy. Medical Physics, 2014, 41, 071703.	3.0	6
125	Particle radiosurgery: A new frontier of physics in medicine. Physica Medica, 2014, 30, 535-538.	0.7	12
126	30: Studying inter- and intrafraction motion mitigation with sequential 4DCTs of lung tumor patients. Radiotherapy and Oncology, 2014, 110, S15-S16.	0.6	0

#	Article	IF	CITATIONS
127	Preclinical investigations towards the first spacer gel application in prostate cancer treatment during particle therapy at HIT. Radiation Oncology, 2013, 8, 134.	2.7	13
128	Tumor tracking based on correlation models in scanned ion beam therapy: an experimental study. Physics in Medicine and Biology, 2013, 58, 4659-4678.	3.0	18
129	Development of a Voxel-Based NTCP Algorithm for Treatment Planning. International Journal of Radiation Oncology Biology Physics, 2013, 87, S687-S688.	0.8	0
130	A 4D-optimization concept for scanned ion beam therapy. Radiotherapy and Oncology, 2013, 109, 419-424.	0.6	38
131	Prediction methods for synchronization of scanned ion beam tracking. Physica Medica, 2013, 29, 639-643.	0.7	4
132	Assessment of Uncertainties in Treatment Planning for Scanned Ion Beam Therapy of Moving Tumors. International Journal of Radiation Oncology Biology Physics, 2013, 85, 528-535.	0.8	14
133	Gating delays for two respiratory motion sensors in scanned particle radiation therapy. Physics in Medicine and Biology, 2013, 58, N295-N302.	3.0	13
134	4D particle therapy PET simulation for moving targets irradiated with scanned ion beams. Physics in Medicine and Biology, 2013, 58, 513-533.	3.0	11
135	Experimental verification of a 4D MLEM reconstruction algorithm used for in-beam PET measurements in particle therapy. Physics in Medicine and Biology, 2013, 58, 5085-5111.	3.0	18
136	Current status of 4D offline PET-based treatment verification at the Heidelberg Ion-Beam Therapy Center. , 2013, , .		1
137	Upgrade and benchmarking of a 4D treatment planning system for scanned ion beam therapy. Medical Physics, 2013, 40, 051722.	3.0	58
138	Particle therapy for noncancer diseases. Medical Physics, 2012, 39, 1716-1727.	3.0	50
139	Motion mitigation in intensity modulated particle therapy by internal target volumes covering range changes. Medical Physics, 2012, 39, 6004-6013.	3.0	70
140	107 RECONSTRUCTION OF 4D IN-BEAM PET DATA FOR QUALITY CONTROL OF MOVING TARGET IRRADIATION IN ION BEAM THERAPY. Radiotherapy and Oncology, 2012, 102, S43-S44.	0.6	1
141	129 FIRST STEPS TOWARDS 4D OFFLINE PET-BASED TREATMENT VERIFICATION AT THE HEIDELBERG ION BEAM THERAPY CENTER. Radiotherapy and Oncology, 2012, 102, S55-S56.	0.6	4
142	A breathing thorax phantom with independently programmable 6D tumour motion for dosimetric measurements in radiation therapy. Physics in Medicine and Biology, 2012, 57, 2235-2250.	3.0	47
143	Scanned carbon beam irradiation of moving films: comparison of measured and calculated response. Radiation Oncology, 2012, 7, 55.	2.7	14
144	Compensation of Target Motion. Biological and Medical Physics Series, 2012, , 545-558.	0.4	2

#	Article	IF	CITATIONS
145	SU-E-T-334: Clinical Implementation of Gating and Dose Verification with Scanned Ion Beams at HIT. Medical Physics, 2012, 39, 3780-3781.	3.0	3
146	TU-A-BRA-08: Integration of Optical Tracking for Organ Motion Compensation in Scanned Ion-Beam Therapy. Medical Physics, 2012, 39, 3889-3889.	3.0	3
147	WE-G-213CD-01: 4D Optimization for Scanned Ion Beam Tracking Therapy for Moving Tumors. Medical Physics, 2012, 39, 3970-3970.	3.0	2
148	Experimental verification of a real-time compensation functionality for dose changes due to target motion in scanned particle therapy. Medical Physics, 2011, 38, 5448-5458.	3.0	31
149	Precision and Uncertainties in Proton Therapy for Moving Targets. Series in Medical Physics and Biomedical Engineering, 2011, , 435-460.	0.1	10
150	Calculation and experimental verification of the RBE-weighted dose for scanned ion beams in the presence of target motion. Physics in Medicine and Biology, 2011, 56, 7337-7351.	3.0	12
151	Motion in radiotherapy: particle therapy. Physics in Medicine and Biology, 2011, 56, R113-R144.	3.0	295
152	TH-C-BRC-09: Tracking Moving Tumors with a Scanned Carbon Beam: Robustness to Changing Target Motion Characteristics and Tracking Uncertainties. Medical Physics, 2011, 38, 3858-3858.	3.0	1
153	Respiratory motion management in particle therapy. Medical Physics, 2010, 37, 449-460.	3.0	127
154	Dosimetric precision of an ion beam tracking system. Radiation Oncology, 2010, 5, 61.	2.7	36
155	Development and performance evaluation of a dynamic phantom for biological dosimetry of moving targets. Physics in Medicine and Biology, 2010, 55, 2997-3009.	3.0	6
156	lon-optical studies for a range adaptation method in ion beam therapy using a static wedge degrader combined with magnetic beam deflection. Physics in Medicine and Biology, 2010, 55, 3499-3513.	3.0	12
157	4D inâ€beam positron emission tomography for verification of motionâ€compensated ion beam therapy. Medical Physics, 2009, 36, 4230-4243.	3.0	28
158	Speed and accuracy of a beam tracking system for treatment of moving targets with scanned ion beams. Physics in Medicine and Biology, 2009, 54, 4849-4862.	3.0	69
159	Gated Irradiation With Scanned Particle Beams. International Journal of Radiation Oncology Biology Physics, 2009, 73, 1270-1275.	0.8	75
160	Motion compensation with a scanned ion beam: a technical feasibility study. Radiation Oncology, 2008, 3, 34.	2.7	63
161	Experimental Validation of a Beam Tracking System for the Treatment of Moving Targets with Scanned Ion Beams. International Journal of Radiation Oncology Biology Physics, 2008, 72, S27.	0.8	1
162	First 4D in-beam PET measurement for beam tracking of a moving phantom with a scanned carbon ion beam. , 2008, , .		1

#	Article	IF	CITATIONS
163	Quantification of interplay effects of scanned particle beams and moving targets. Physics in Medicine and Biology, 2008, 53, 2253-2265.	3.0	223
164	THâ€Câ€350â€05: Performance of a Beam Tracking System for Treatment of Moving Targets with Scanned Ion Beams. Medical Physics, 2008, 35, 2967-2967.	3.0	2
165	TUâ€EEâ€A2â€03: Target Motion Tracking with a Scanned Particle Beam: Calculation and Experimental Validation of Biologically Effective Doses in the Presence of Motion. Medical Physics, 2008, 35, 2911-2911.	3.0	1
166	Target motion tracking with a scanned particle beam. Medical Physics, 2007, 34, 4768-4771.	3.0	115
167	4D treatment planning for scanned ion beams. Radiation Oncology, 2007, 2, 24.	2.7	105
168	Clinical experience with a 3D surface patient setup system for alignment of partial-breast irradiation patients. International Journal of Radiation Oncology Biology Physics, 2006, 64, 1265-1274.	0.8	169
169	Simulations to design an online motion compensation system for scanned particle beams. Physics in Medicine and Biology, 2006, 51, 3517-3531.	3.0	66
170	SU-FF-J-126: Treatment of Moving Targets with Scanned Ion Beams: A Comparison of Different Strategies. Medical Physics, 2006, 33, 2049-2049.	3.0	1
171	A phantom evaluation of a stereo-vision surface imaging system for radiotherapy patient setup. Medical Physics, 2005, 32, 2753-2762.	3.0	179
172	Computed tomography using the Medipix1 chip. Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2003, 509, 240-250.	1.6	18