Kevin D Read

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6480158/publications.pdf

Version: 2024-02-01

70 papers 3,870 citations

147801 31 h-index 60 g-index

74 all docs

74 docs citations

times ranked

74

5203 citing authors

#	Article	IF	CITATIONS
1	A novel multiple-stage antimalarial agent that inhibits protein synthesis. Nature, 2015, 522, 315-320.	27.8	353
2	Anti-trypanosomatid drug discovery: an ongoing challenge and a continuing need. Nature Reviews Microbiology, 2017, 15, 217-231.	28.6	315
3	N-myristoyltransferase inhibitors as new leads to treat sleeping sickness. Nature, 2010, 464, 728-732.	27.8	272
4	Central Nervous System Drug Disposition: The Relationship between in Situ Brain Permeability and Brain Free Fraction. Journal of Pharmacology and Experimental Therapeutics, 2007, 322, 205-213.	2.5	247
5	Potent and selective chemical probe of hypoxic signalling downstream of HIF- $\hat{l}\pm$ hydroxylation via VHL inhibition. Nature Communications, 2016, 7, 13312.	12.8	167
6	The Anti-Trypanosome Drug Fexinidazole Shows Potential for Treating Visceral Leishmaniasis. Science Translational Medicine, 2012, 4, 119re1.	12.4	126
7	Preclinical candidate for the treatment of visceral leishmaniasis that acts through proteasome inhibition. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 9318-9323.	7.1	119
8	Receptor Occupancy and Brain Free Fraction. Drug Metabolism and Disposition, 2009, 37, 753-760.	3.3	114
9	Cyclin-dependent kinase 12 is a drug target for visceral leishmaniasis. Nature, 2018, 560, 192-197.	27.8	112
10	Group-Based Optimization of Potent and Cell-Active Inhibitors of the von Hippel–Lindau (VHL) E3 Ubiquitin Ligase: Structure–Activity Relationships Leading to the Chemical Probe (2 <i>S</i> ,4 <i>R</i>)-1-((<i>S</i>)-2-(1-Cyanocyclopropanecarboxamido)-3,3-dimethylbutanoyl)-4-hydroxy- <i>N (VH298). Journal of Medicinal Chemistry, 2018, 61, 599-618.</i>	6-44-(4-	106 methylthiazol
11	Discovery of a Novel Class of Orally Active Trypanocidal <i>N</i> Journal of Medicinal Chemistry, 2012, 55, 140-152.	6.4	102
12	Target Validation: Linking Target and Chemical Properties to Desired Product Profile. Current Topics in Medicinal Chemistry, 2011, 11, 1275-1283.	2.1	99
13	Lysyl-tRNA synthetase as a drug target in malaria and cryptosporidiosis. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 7015-7020.	7.1	94
14	Essential but Not Vulnerable: Indazole Sulfonamides Targeting Inosine Monophosphate Dehydrogenase as Potential Leads against <i>Mycobacterium tuberculosis</i> . ACS Infectious Diseases, 2017, 3, 18-33.	3.8	77
15	Activation of Bicyclic Nitro-drugs by a Novel Nitroreductase (NTR2) in Leishmania. PLoS Pathogens, 2016, 12, e1005971.	4.7	73
16	Nitroheterocyclic drugs cure experimental Trypanosoma cruzi infections more effectively in the chronic stage than in the acute stage. Scientific Reports, 2016, 6, 35351.	3.3	72
17	Identification of a \hat{I}^2 -opioid agonist as a potent and selective lead for drug development against human African trypanosomiasis. Biochemical Pharmacology, 2010, 80, 1478-1486.	4.4	69
18	The anti-tubercular drug delamanid as a potential oral treatment for visceral leishmaniasis. ELife, 2016, 5, .	6.0	67

#	Article	IF	CITATIONS
19	Discovery of a Quinoline-4-carboxamide Derivative with a Novel Mechanism of Action, Multistage Antimalarial Activity, and Potent in Vivo Efficacy. Journal of Medicinal Chemistry, 2016, 59, 9672-9685.	6.4	66
20	Assessing brain free fraction in early drug discovery. Expert Opinion on Drug Metabolism and Toxicology, 2010, 6, 337-344.	3.3	65
21	Discovery of \hat{I}^2 2 Adrenergic Receptor Ligands Using Biosensor Fragment Screening of Tagged Wild-Type Receptor. ACS Medicinal Chemistry Letters, 2013, 4, 1005-1010.	2.8	65
22	The $\langle i \rangle R \langle i \rangle$ Enantiomer of the Antitubercular Drug PA-824 as a Potential Oral Treatment for Visceral Leishmaniasis. Antimicrobial Agents and Chemotherapy, 2013, 57, 4699-4706.	3.2	62
23	Lead Optimization of a Pyrazole Sulfonamide Series of <i>Trypanosoma bruceiN</i> -Myristoyltransferase Inhibitors: Identification and Evaluation of CNS Penetrant Compounds as Potential Treatments for Stage 2 Human African Trypanosomiasis. Journal of Medicinal Chemistry, 2014. 57. 9855-9869.	6.4	57
24	Pharmacological Validation of <i>N</i> -Myristoyltransferase as a Drug Target in <i>Leishmania donovani</i> . ACS Infectious Diseases, 2019, 5, 111-122.	3.8	55
25	Combining PET Biodistribution and Equilibrium Dialysis Assays to Assess the Free Brain Concentration and BBB Transport of CNS Drugs. Journal of Cerebral Blood Flow and Metabolism, 2012, 32, 874-883.	4. 3	53
26	2-Mercapto-Quinazolinones as Inhibitors of Type II NADH Dehydrogenase and <i>Mycobacterium tuberculosis</i> : Structure–Activity Relationships, Mechanism of Action and Absorption, Distribution, Metabolism, and Excretion Characterization. ACS Infectious Diseases, 2018, 4, 954-969.	3.8	49
27	Biochemical and Structural Characterization of Selective Allosteric Inhibitors of the <i>Plasmodium falciparum</i> Drug Target, Prolyl-tRNA-synthetase. ACS Infectious Diseases, 2017, 3, 34-44.	3.8	45
28	Development of a Fluorescence-based Trypanosoma cruzi CYP51 Inhibition Assay for Effective Compound Triaging in Drug Discovery Programmes for Chagas Disease. PLoS Neglected Tropical Diseases, 2015, 9, e0004014.	3.0	43
29	Identification of Morpholino Thiophenes as Novel <i>Mycobacterium tuberculosis</i> Inhibitors, Targeting QcrB. Journal of Medicinal Chemistry, 2018, 61, 6592-6608.	6.4	43
30	The relationship between sodium channel inhibition and anticonvulsant activity in a model of generalised seizure in the rat. Epilepsy Research, 2009, 85, 96-106.	1.6	41
31	A Molecular Hybridization Approach for the Design of Potent, Highly Selective, and Brain-Penetrant <i>N</i> -Myristoyltransferase Inhibitors. Journal of Medicinal Chemistry, 2018, 61, 8374-8389.	6.4	41
32	A brain-permeable inhibitor of the neurodegenerative disease target kynurenine 3-monooxygenase prevents accumulation of neurotoxic metabolites. Communications Biology, 2019, 2, 271.	4.4	36
33	Targeting N-myristoylation for therapy of B-cell lymphomas. Nature Communications, 2020, 11, 5348.	12.8	35
34	Identification of GSK3186899/DDD853651 as a Preclinical Development Candidate for the Treatment of Visceral Leishmaniasis. Journal of Medicinal Chemistry, 2019, 62, 1180-1202.	6.4	33
35	Discovery and Optimization of 5-Amino-1,2,3-triazole-4-carboxamide Series against <i>Trypanosoma cruzi</i> . Journal of Medicinal Chemistry, 2017, 60, 7284-7299.	6.4	31
36	Hit-to-Lead Optimization of a Novel Class of Potent, Broad-Spectrum Trypanosomacides. Journal of Medicinal Chemistry, 2016, 59, 9686-9720.	6.4	30

#	Article	IF	Citations
37	Discovery of Indoline-2-carboxamide Derivatives as a New Class of Brain-Penetrant Inhibitors of <i>Trypanosoma brucei</i> . Journal of Medicinal Chemistry, 2015, 58, 7695-7706.	6.4	28
38	Metabolomics and lipidomics reveal perturbation of sphingolipid metabolism by a novel anti-trypanosomal 3-(oxazolo[4,5-b]pyridine-2-yl)anilide. Metabolomics, 2016, 12, 1.	3.0	28
39	Chemical synthesis, characterisation and in vitro and in vivo metabolism of the synthetic opioid MT-45 and its newly identified fluorinated analogue 2F-MT-45 with metabolite confirmation in urine samples from known drug users. Forensic Toxicology, 2018, 36, 359-374.	2.4	26
40	Pharmacokinetics of \hat{l}^2 -Lactam Antibiotics: Clues from the Past To Help Discover Long-Acting Oral Drugs in the Future. ACS Infectious Diseases, 2018, 4, 1439-1447.	3.8	26
41	Host-parasite co-metabolic activation of antitrypanosomal aminomethyl-benzoxaboroles. PLoS Pathogens, 2018, 14, e1006850.	4.7	26
42	Scaffold-Hopping Strategy on a Series of Proteasome Inhibitors Led to a Preclinical Candidate for the Treatment of Visceral Leishmaniasis. Journal of Medicinal Chemistry, 2021, 64, 5905-5930.	6.4	25
43	Chemical Validation of Methionyl-tRNA Synthetase as a Druggable Target in <i>Leishmania donovani</i> . ACS Infectious Diseases, 2017, 3, 718-727.	3.8	22
44	Development of Smallâ€Molecule <i>Trypanosoma brucei N</i> â€Myristoyltransferase Inhibitors: Discovery and Optimisation of a Novel Binding Mode. ChemMedChem, 2015, 10, 1821-1836.	3.2	20
45	Spirocycle MmpL3 Inhibitors with Improved hERG and Cytotoxicity Profiles as Inhibitors of <i>Mycobacterium tuberculosis</i> Growth. ACS Omega, 2021, 6, 2284-2311.	3.5	19
46	Discovery of super soft-drug modulators of sphingosine-1-phosphate receptor 1. Bioorganic and Medicinal Chemistry Letters, 2018, 28, 3255-3259.	2.2	18
47	Loss of CRMP2 O-GlcNAcylation leads to reduced novel object recognition performance in mice. Open Biology, 2019, 9, 190192.	3.6	17
48	Setting Our Sights on Infectious Diseases. ACS Infectious Diseases, 2020, 6, 3-13.	3.8	17
49	Veterinary trypanocidal benzoxaboroles are peptidase-activated prodrugs. PLoS Pathogens, 2020, 16, e1008932.	4.7	16
50	Discovery of Inhibitors of <i>Trypanosoma brucei</i> by Phenotypic Screening of a Focused Protein Kinase Library. ChemMedChem, 2015, 10, 1809-1820.	3.2	15
51	A Systematic Study of the In Vitro Pharmacokinetics and Estimated Human In Vivo Clearance of Indole and Indazole-3-Carboxamide Synthetic Cannabinoid Receptor Agonists Detected on the Illicit Drug Market. Molecules, 2021, 26, 1396.	3.8	15
52	Optimization of TAM16, a Benzofuran That Inhibits the Thioesterase Activity of Pks13; Evaluation toward a Preclinical Candidate for a Novel Antituberculosis Clinical Target. Journal of Medicinal Chemistry, 2022, 65, 409-423.	6.4	15
53	Design and Synthesis of Brain Penetrant Trypanocidal <i>N</i> Hyristoyltransferase Inhibitors. Journal of Medicinal Chemistry, 2017, 60, 9790-9806.	6.4	14
54	Trisubstituted Pyrimidines as Efficacious and Fast-Acting Antimalarials. Journal of Medicinal Chemistry, 2016, 59, 6101-6120.	6.4	13

#	Article	IF	Citations
55	Re-evaluating pretomanid analogues for Chagas disease: Hit-to-lead studies reveal both inÂvitro and inÂvivo trypanocidal efficacy. European Journal of Medicinal Chemistry, 2020, 207, 112849.	5.5	13
56	Identification and Optimization of a Series of 8-Hydroxy Naphthyridines with Potent In Vitro Antileishmanial Activity: Initial SAR and Assessment of In Vivo Activity. Journal of Medicinal Chemistry, 2020, 63, 9523-9539.	6.4	8
57	Discovery and Optimization of a Compound Series Active against <i>Trypanosoma cruzi</i> , the Causative Agent of Chagas Disease. Journal of Medicinal Chemistry, 2020, 63, 3066-3089.	6.4	8
58	Repositioning of a Diaminothiazole Series Confirmed to Target the Cyclin-Dependent Kinase CRK12 for Use in the Treatment of African Animal Trypanosomiasis. Journal of Medicinal Chemistry, 2022, 65, 5606-5624.	6.4	8
59	Optimisation of the Antiâ€ <i>Trypanosoma brucei⟨ i⟩ Activity of the Opioid Agonist U50488. ChemMedChem, 2011, 6, 1832-1840.</i>	3.2	7
60	Compounds enhancing human sperm motility identified using a high-throughput phenotypic screening platform. Human Reproduction, 2022, 37, 466-475.	0.9	6
61	2,4-Diamino-6-methylpyrimidines for the potential treatment of Chagas' disease. Bioorganic and Medicinal Chemistry Letters, 2018, 28, 3025-3030.	2.2	5
62	Substituted Aminoacetamides as Novel Leads for Malaria Treatment. ChemMedChem, 2019, 14, 1329-1335.	3.2	5
63	Discovery of Soft-Drug Topical Tool Modulators of Sphingosine-1-phosphate Receptor 1 (S1PR1). ACS Medicinal Chemistry Letters, 2019, 10, 341-347.	2.8	5
64	Preparation, biological & Deminformatics-based assessment of N2,N4-diphenylpyrimidine-2,4-diamine as potential Kinase-targeted antimalarials. Bioorganic and Medicinal Chemistry, 2021, 46, 116348.	3.0	5
65	Initial Characterization and Toxicology of an Nmt Inhibitor in Development for Hematologic Malignancies. Blood, 2019, 134, 3362-3362.	1.4	4
66	Identification of 6-amino-1 <i>H</i> -pyrazolo[3,4- <i>d</i>)]pyrimidines with <i>in vivo</i> efficacy against visceral leishmaniasis. RSC Medicinal Chemistry, 2020, 11, 1168-1177.	3.9	2
67	Veterinary trypanocidal benzoxaboroles are peptidase-activated prodrugs. , 2020, 16, e1008932.		0
68	Veterinary trypanocidal benzoxaboroles are peptidase-activated prodrugs. , 2020, 16, e1008932.		0
69	Veterinary trypanocidal benzoxaboroles are peptidase-activated prodrugs. , 2020, 16, e1008932.		O
70	Veterinary trypanocidal benzoxaboroles are peptidase-activated prodrugs., 2020, 16, e1008932.		O