
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6480055/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Brominated flame retardants, a cornelian dilemma. Environmental Chemistry Letters, 2023, 21, 9-14.	16.2	6
2	Space industrialization. Environmental Chemistry Letters, 2023, 21, 1-7.	16.2	5
3	Abiotic transformation of polycyclic aromatic hydrocarbons via interaction with soil components: A systematic review. Critical Reviews in Environmental Science and Technology, 2023, 53, 676-699.	12.8	10
4	Electronic waste pollution and the COVID-19 pandemic. Environmental Chemistry Letters, 2022, 20, 971-974.	16.2	14
5	The viral phoenix: enhanced infectivity and immunity evasion of SARS-CoV-2 variants. Environmental Chemistry Letters, 2022, 20, 1539-1544.	16.2	6
6	In situ electrochemical synthesis of graphene-poly(arginine) composite for p-nitrophenol monitoring. Journal of Hazardous Materials, 2022, 421, 126718.	12.4	25
7	Weak electrical stimulation on biological denitrification: Insights from the denitrifying enzymes. Science of the Total Environment, 2022, 806, 150926.	8.0	14
8	Electrochemical crystallization for recovery of phosphorus and potassium from urine as K-struvite with aÂsacrificial magnesium anode. Environmental Chemistry Letters, 2022, 20, 27-33.	16.2	5
9	Society organization, not pathogenic viruses, is the fundamental cause of pandemics. Environmental Chemistry Letters, 2022, 20, 1545-1551.	16.2	6
10	Pesticide resurrection. Environmental Chemistry Letters, 2022, 20, 3357-3362.	16.2	9
11	Enhanced nutrient removal from mixed black water by a microbial ultra-low weak electrical stimulated anaerobic-two stage anoxic/aerobic process. Chemical Engineering Journal, 2022, 434, 134615.	12.7	9
12	Removal of emerging contaminants from wastewater using advanced treatments. A review. Environmental Chemistry Letters, 2022, 20, 1333-1375.	16.2	124
13	River therapy. Environmental Chemistry Letters, 2022, 20, 2729-2734.	16.2	11
14	Hemp-Based Materials for Applications in Wastewater Treatment by Biosorption-Oriented Processes: A Review. , 2022, , 239-295.		2
15	Anaerobic digestion and recycling of kitchen waste: a review. Environmental Chemistry Letters, 2022, 20, 1745-1762.	16.2	33
16	Professor Casu's contribution to cyclodextrins, the remarkable cage-shaped molecules: a review. Environmental Chemistry Letters, 2022, 20, 2085-2095.	16.2	1
17	Methods for selenium removal from contaminated waters: a review. Environmental Chemistry Letters, 2022, 20, 2019-2041.	16.2	14
18	Innovative technologies to remove alkylphenols from wastewater: a review. Environmental Chemistry Letters, 2022, 20, 2597-2628.	16.2	10

#	Article	IF	CITATIONS
19	Enhancing thermophilic anaerobic co-digestion of sewage sludge and food waste with biogas residue biochar. Renewable Energy, 2022, 188, 465-475.	8.9	36
20	The protective layer formed by soil particles on plastics decreases the toxicity of polystyrene microplastics to earthworms (Eisenia fetida). Environment International, 2022, 162, 107158.	10.0	29
21	Local production, downward and regional transport aggravated surface ozone pollution during the historical orange-alert large-scale ozone episode in eastern China. Environmental Chemistry Letters, 2022, 20, 1577-1588.	16.2	19
22	Enhanced methane production by granular activated carbon: A review. Fuel, 2022, 320, 123903.	6.4	16
23	Worldwide cases of water pollution by emerging contaminants: a review. Environmental Chemistry Letters, 2022, 20, 2311-2338.	16.2	117
24	Accelerated start-up and improved performance of wastewater microbial fuel cells in four circuit modes: Role of anodic potential. Journal of Power Sources, 2022, 535, 231403.	7.8	12
25	High-resolution mapping of premature mortality induced by atmospheric particulate matter in China. Environmental Chemistry Letters, 2022, 20, 2735-2743.	16.2	4
26	Towards synergistic combination of biochar/ultrasonic persulfate enhancing removal of natural humic acids from water. Journal of Environmental Chemical Engineering, 2022, 10, 107809.	6.7	12
27	Remediation of heavy metal polluted waters using activated carbon from lignocellulosic biomass: An update of recent trends. Chemosphere, 2022, 302, 134825.	8.2	53
28	High increase in biodegradability of coking wastewater enhanced by Mn ore tailings in Fenton/O3 combined processes. International Journal of Environmental Science and Technology, 2021, 18, 173-184.	3.5	5
29	Weak electricity stimulates biological nitrate removal of wastewater: Hypothesis and first evidences. Science of the Total Environment, 2021, 757, 143764.	8.0	10
30	Back to plastic pollution in COVID times. Environmental Chemistry Letters, 2021, 19, 1-4.	16.2	69
31	Plant-derived silica nanoparticles and composites for biosensors, bioimaging, drug delivery and supercapacitors: a review. Environmental Chemistry Letters, 2021, 19, 1667-1691.	16.2	94
32	Classical and alternative disinfection strategies to control the COVID-19 virus in healthcare facilities: a review. Environmental Chemistry Letters, 2021, 19, 1945-1951.	16.2	46
33	Backward transmission of COVID-19 from humans to animals may propagate reinfections and induce vaccine failure. Environmental Chemistry Letters, 2021, 19, 763-768.	16.2	42
34	Emerging Contaminants: Analysis, Aquatic Compartments and Water Pollution. Environmental Chemistry for A Sustainable World, 2021, , 1-111.	0.5	3
35	Remediation of Emerging Contaminants. Environmental Chemistry for A Sustainable World, 2021, , 1-106.	0.5	5
36	Unprofitability of small biogas plants without subsidies in the Brandenburg region. Environmental Chemistry Letters, 2021, 19, 1823-1829.	16.2	20

#	Article	IF	CITATIONS
37	Positive environmental effects of the coronavirus 2020 episode: a review. Environment, Development and Sustainability, 2021, 23, 12738-12760.	5.0	61
38	Plant and algal toxicity of persistent free radicals and reactive oxygen species generated by heating anthracene-contaminated soils from 100 to 600°C. Environmental Chemistry Letters, 2021, 19, 2695-2703.	16.2	7
39	Formation of persistent free radicals in sludge biochar by hydrothermal carbonization. Environmental Chemistry Letters, 2021, 19, 2705-2712.	16.2	18
40	High resolution mapping of nighttime light and air pollutants during the COVID-19 lockdown in Wuhan. Environmental Chemistry Letters, 2021, 19, 3477-3485.	16.2	16
41	Smarter cures to combat COVID-19 and future pathogens: a review. Environmental Chemistry Letters, 2021, 19, 2759-2771.	16.2	26
42	Augmentation of chloramphenicol degradation by Geobacter-based biocatalysis and electric field. Journal of Hazardous Materials, 2021, 410, 124977.	12.4	31
43	Biochar promotes methane production during anaerobic digestion of organic waste. Environmental Chemistry Letters, 2021, 19, 3557-3564.	16.2	24
44	Unanswered issues related to the COVID-19 pandemic. Environmental Chemistry Letters, 2021, 19, 3523-3524.	16.2	13
45	Nanozymes to fight the COVID-19 and future pandemics. Environmental Chemistry Letters, 2021, 19, 3951-3957.	16.2	16
46	Boosting light-driven CO2 reduction into solar fuels: Mainstream avenues for engineering ZnO-based photocatalysts. Environmental Research, 2021, 197, 111134.	7.5	61
47	Advanced activation of persulfate by polymeric g-C3N4 based photocatalysts for environmental remediation: A review. Journal of Hazardous Materials, 2021, 413, 125324.	12.4	293
48	Large scale control of surface ozone by relative humidity observed during warm seasons in China. Environmental Chemistry Letters, 2021, 19, 3981-3989.	16.2	29
49	The impact of successive COVID-19 lockdowns on people mobility, lockdown efficiency, and municipal solid waste. Environmental Chemistry Letters, 2021, 19, 3959-3965.	16.2	30
50	Antimicrobial Ionic Liquidâ€Based Materials for Biomedical Applications. Advanced Functional Materials, 2021, 31, 2104148.	14.9	116
51	Toxicity and remediation of pharmaceuticals and pesticides using metal oxides and carbon nanomaterials. Chemosphere, 2021, 275, 130055.	8.2	89
52	lonic liquid-based antimicrobial materials for water treatment, air filtration, food packaging and anticorrosion coatings. Advances in Colloid and Interface Science, 2021, 294, 102454.	14.7	43
53	Biogas upgrading, economy and utilization: a review. Environmental Chemistry Letters, 2021, 19, 4137-4164.	16.2	71
54	Efficient recovery of phosphate from simulated urine by Mg/Fe bimetallic oxide modified biochar as a potential resource. Science of the Total Environment, 2021, 784, 147546.	8.0	49

#	Article	IF	CITATIONS
55	Triaromatic dinosteroids – Isomeric distributions and their geochemical significance. Organic Geochemistry, 2021, 162, 104300.	1.8	5
56	Comprehensive role of thermal combined ultrasonic pre-treatment in sewage sludge disposal. Science of the Total Environment, 2021, 789, 147862.	8.0	15
57	Advantage of conductive materials on interspecies electron transfer-independent acetoclastic methanogenesis: A critical review. Fuel, 2021, 305, 121577.	6.4	24
58	Sustainable ferrate oxidation: Reaction chemistry, mechanisms and removal of pollutants in wastewater. Environmental Pollution, 2021, 290, 117957.	7.5	55
59	130 years of cyclodextrin discovery for health, food, agriculture, and the industry: a review. Environmental Chemistry Letters, 2021, 19, 2581-2617.	16.2	102
60	Technologies to Remove Selenium from Water and Wastewater. Environmental Chemistry for A Sustainable World, 2021, , 207-304.	0.5	11
61	Advanced Treatments for the Removal of Alkylphenols and Alkylphenol Polyethoxylates from Wastewater. Environmental Chemistry for A Sustainable World, 2021, , 305-398.	0.5	3
62	COVID-19 epidemiologic surveillance using wastewater. Environmental Chemistry Letters, 2021, 19, 1911-1915.	16.2	22
63	Antimicrobial Ionic Liquidâ€Based Materials for Biomedical Applications (Adv. Funct. Mater. 42/2021). Advanced Functional Materials, 2021, 31, 2170312.	14.9	3
64	Non-stop industries were the main source of air pollution during the 2020 coronavirus lockdown in the North China Plain. Environmental Chemistry Letters, 2021, , 1-11.	16.2	3
65	Removal of humic substances by the synergistic effect of biochar adsorption and activation of persulfate. Journal of Water Process Engineering, 2021, 44, 102428.	5.6	19
66	CO2 capture from coalbed methane using membranes: a review. Environmental Chemistry Letters, 2020, 18, 79-96.	16.2	46
67	Evidence for water ridges at oil–water interfaces: implications for ion transport. Soft Matter, 2020, 16, 826-832.	2.7	8
68	Configuration and rapid start-up of a novel combined microbial electrolytic process treating fecal sewage. Science of the Total Environment, 2020, 705, 135986.	8.0	13
69	Self-provided microbial electricity enhanced wastewater treatment using carbon felt anode coated with amino-functionalized Fe3O4. Journal of Water Process Engineering, 2020, 38, 101649.	5.6	8
70	Carbon nanotubes accelerate acetoclastic methanogenesis: From pure cultures to anaerobic soils. Soil Biology and Biochemistry, 2020, 150, 107938.	8.8	35
71	Unprotected mothers and infants breastfeeding in public amenities during the COVID-19 pandemic. Environmental Chemistry Letters, 2020, 18, 1447-1450.	16.2	19
72	Who is running faster, the virus or the vaccine?. Environmental Chemistry Letters, 2020, 18, 1761-1766.	16.2	13

#	Article	IF	CITATIONS
73	Removal of Mercury Ions from Aqueous Solutions by Crosslinked Chitosanâ€based Adsorbents: A Mini Review. Chemical Record, 2020, 20, 1220-1234.	5.8	23
74	Green polymeric nanomaterials for the photocatalytic degradation of dyes: a review. Environmental Chemistry Letters, 2020, 18, 1569-1580.	16.2	134
75	Unexpected rise of ozone in urban and rural areas, and sulfur dioxide in rural areas during the coronavirus city lockdown in Hangzhou, China: implications for air quality. Environmental Chemistry Letters, 2020, 18, 1713-1723.	16.2	68
76	Environmental chemistry is most relevant to study coronavirus pandemics. Environmental Chemistry Letters, 2020, 18, 993-996.	16.2	60
77	Applications of hemp in textiles, paper industry, insulation and building materials, horticulture, animal nutrition, food and beverages, nutraceuticals, cosmetics and hygiene, medicine, agrochemistry, energy production and environment: a review. Environmental Chemistry Letters, 2020, 18, 1451-1476.	16.2	184
78	Removal of microplastics from the environment. A review. Environmental Chemistry Letters, 2020, 18, 807-828.	16.2	341
79	A new assay of bacterial selection with Pb reveals an unexpected effect of Pb on bacterial behavior: implications for remediation. Environmental Chemistry Letters, 2020, 18, 983-992.	16.2	6
80	Copper, silver, and titania nanoparticles do not release ions under anoxic conditions and release only minute ion levels under oxic conditions in water: Evidence for the low toxicity of nanoparticles. Environmental Chemistry Letters, 2020, 18, 1319-1328.	16.2	31
81	Common source areas of air pollution vary with haze intensity in the Yangtze River Delta, China. Environmental Chemistry Letters, 2020, 18, 957-965.	16.2	18
82	High spatio-temporal heterogeneity of carbon footprints in theÂZhejiang Province, China, from 2005 to 2015: implications for climate change policies. Environmental Chemistry Letters, 2020, 18, 931-939.	16.2	13
83	High contribution of hydrocarbon transformation during the removal of polycyclic aromatic hydrocarbons from soils, humin and clay by thermal treatment at 100–200°C. Environmental Chemistry Letters, 2020, 18, 923-930.	16.2	12
84	Methane production by acetate dismutation stimulated by Shewanella oneidensis and carbon materials: An alternative to classical CO2 reduction. Chemical Engineering Journal, 2020, 389, 124469.	12.7	40
85	Enhanced removal of antimony in dyeing wastewater by mixing Fe 3 O 4 with manganese sand filter material. Water Environment Research, 2020, 92, 1208-1213.	2.7	8
86	Formation of environmentally persistent free radicals and reactive oxygen species during the thermal treatment of soils contaminated by polycyclic aromatic hydrocarbons. Environmental Chemistry Letters, 2020, 18, 1329-1336.	16.2	25
87	Effect of Antibiotics on the Microbial Efficiency of Anaerobic Digestion of Wastewater: A Review. Frontiers in Microbiology, 2020, 11, 611613.	3.5	38
88	History of Cyclodextrins. Environmental Chemistry for A Sustainable World, 2020, , 1-93.	0.5	10
89	Traditional and New Applications of Hemp. Sustainable Agriculture Reviews, 2020, , 37-87.	1.1	12
90	Conventional and non-conventional adsorbents for wastewater treatment. Environmental Chemistry Letters, 2019, 17, 195-213.	16.2	611

6

#	Article	IF	CITATIONS
91	Advantages and disadvantages of techniques used for wastewater treatment. Environmental Chemistry Letters, 2019, 17, 145-155.	16.2	1,575
92	CaCu3Ti4O12, an efficient catalyst for ibuprofen removal by activation of peroxymonosulfate under visible-light irradiation. Environmental Chemistry Letters, 2019, 17, 481-486.	16.2	32
93	Applications of chitosan in food, pharmaceuticals, medicine, cosmetics, agriculture, textiles, pulp and paper, biotechnology, and environmental chemistry. Environmental Chemistry Letters, 2019, 17, 1667-1692.	16.2	401
94	Chitosan for direct bioflocculation of wastewater. Environmental Chemistry Letters, 2019, 17, 1603-1621.	16.2	90
95	Treatment of fluoride-contaminated water. A review. Environmental Chemistry Letters, 2019, 17, 1707-1726.	16.2	55
96	Dye removal by biosorption using cross-linked chitosan-based hydrogels. Environmental Chemistry Letters, 2019, 17, 1645-1666.	16.2	94
97	Hemp to limit diffusion of difenoconazole in vegetable garden soils. Heliyon, 2019, 5, e02392.	3.2	7
98	Fundamentals and Applications of Chitosan. Sustainable Agriculture Reviews, 2019, , 49-123.	1.1	60
99	Cross-Linked Chitosan-Based Hydrogels for Dye Removal. Sustainable Agriculture Reviews, 2019, , 381-425.	1.1	12
100	Chitosan for Direct Bioflocculation Processes. Sustainable Agriculture Reviews, 2019, , 335-380.	1.1	7
101	Prediction of CO2 absorption by physicalÂsolvents using a chemoinformatics-based machine learning model. Environmental Chemistry Letters, 2019, 17, 1397-1404.	16.2	42
102	High-altitude and long-range transport of aerosols causing regional severe haze during extreme dust storms explains why afforestation does not prevent storms. Environmental Chemistry Letters, 2019, 17, 1333-1340.	16.2	18
103	Effects of Molecular Chain Length on the Contact Line Movement in Water/n-Alkane/Solid Systems. Polymers, 2019, 11, 2081.	4.5	1
104	Hemp-based adsorbents for sequestration of metals: a review. Environmental Chemistry Letters, 2019, 17, 393-408.	16.2	57
105	Diffusive gradients in thin films: devices, materials and applications. Environmental Chemistry Letters, 2019, 17, 801-831.	16.2	70
106	Clay mineral adsorbents for heavy metal removal from wastewater: a review. Environmental Chemistry Letters, 2019, 17, 629-654.	16.2	314
107	Efficient microwave degradation of humic acids in water using persulfate and activated carbon. Environmental Chemistry Letters, 2018, 16, 1069-1075.	16.2	38
108	Treatment of organic pollutants by homogeneous and heterogeneous Fenton reaction processes. Environmental Chemistry Letters, 2018, 16, 947-967.	16.2	254

#	Article	IF	CITATIONS
109	Residential emissions predicted as a major source of fine particulate matter in winter over the Yangtze River Delta, China. Environmental Chemistry Letters, 2018, 16, 1117-1127.	16.2	26
110	Synthesis of a three-dimensional network sodium alginate–poly(acrylic acid)/attapulgite hydrogel with good mechanic property and reusability for efficient adsorption of Cu2+ and Pb2+. Environmental Chemistry Letters, 2018, 16, 653-658.	16.2	35
111	Publishing science without results and recycling research. Environmental Chemistry Letters, 2018, 16, 1-4.	16.2	15
112	Perovskite nanostructures assembled in molten salt based on halogen anions KX (X = F, Cl and Br): Regulated morphology and defect-mediated photocatalytic activity. Applied Catalysis B: Environmental, 2018, 232, 531-543.	20.2	46
113	Wastewater Treatment: An Overview. Environmental Chemistry for A Sustainable World, 2018, , 1-21.	0.5	32
114	Adsorption-Oriented Processes Using Conventional and Non-conventional Adsorbents for Wastewater Treatment. Environmental Chemistry for A Sustainable World, 2018, , 23-71.	0.5	83
115	Hemp-Based Materials for Metal Removal. Environmental Chemistry for A Sustainable World, 2018, , 1-34.	0.5	6
116	Glutathione-functionalized melamine sponge, a mimic of a natural antidote, as a quick responsive adsorbent for efficient removal of Hg(II) from aqueous solutions. Environmental Chemistry Letters, 2018, 16, 1429-1434.	16.2	17
117	Agroecological engineering. Agronomy for Sustainable Development, 2015, 35, 1191-1198.	5.3	16
118	Pollutants in Buildings, Water and Living Organisms. Environmental Chemistry for A Sustainable World, 2015, , .	0.5	5
119	Hydrogen Production and Remediation of Carbon and Pollutants. Environmental Chemistry for A Sustainable World, 2015, , .	0.5	3
120	Environmental Chemistry for a Sustainable World. Environmental Chemistry for A Sustainable World, 2012, , .	0.5	15
121	Social chemistry. Environmental Chemistry Letters, 2012, 10, 1-4.	16.2	7
122	13C-dating, the first method to calculate the relative age of molecular substance homologues in soil. Environmental Chemistry Letters, 2012, 10, 97-103.	16.2	8
123	Biodiversity, Biofuels, Agroforestry and Conservation Agriculture. Sustainable Agriculture Reviews, 2011, , .	1.1	15
124	Genetics, Biofuels and Local Farming Systems. Sustainable Agriculture Reviews, 2011, , .	1.1	5
125	Sustainable Agriculture Volume 2. , 2011, , .		14
126	Emerging Agroscience. , 2011, , 3-14.		0

#	Article	IF	CITATIONS
127	Emerging agroscience. Agronomy for Sustainable Development, 2010, 30, 1-10.	5.3	17
128	Genetic Engineering, Biofertilisation, Soil Quality and Organic Farming. Sustainable Agriculture Reviews, 2010, , .	1.1	14
129	Sociology, Organic Farming, Climate Change and Soil Science. Sustainable Agriculture Reviews, 2010, , .	1.1	11
130	Society Issues, Painkiller Solutions, Dependence and Sustainable Agriculture. Sustainable Agriculture Reviews, 2010, , 1-17.	1.1	10
131	Agronomy for sustainable agriculture. A review. Agronomy for Sustainable Development, 2009, 29, 1-6.	5.3	175
132	Climate Change, Intercropping, Pest Control and Beneficial Microorganisms. , 2009, , .		30
133	Agronomy for Sustainable Agriculture: A Review. , 2009, , 1-7.		25
134	Sustainable Agriculture. , 2009, , .		67
135	Sustainable Agriculture as a Central Science to Solve Global Society Issues. Sustainable Agriculture Reviews, 2009, , 1-3.	1.1	13
136	Climate Change, Society Issues and Sustainable Agriculture. , 2009, , 1-7.		11
137	Fate of organic pollutants after sewage sludge spreading on agricultural soils: a 30-years field-scale recording. Water Practice and Technology, 2007, 2, .	2.0	9
138	A 25-year record of polycyclic aromatic hydrocarbons in soils amended with sewage sludges. Environmental Chemistry Letters, 2005, 3, 140-144.	16.2	17
139	14C of grasses as an indicator of fossil fuel CO2 pollution. Environmental Chemistry Letters, 2005, 3, 78-81.	16.2	14
140	Isolation and characterisation ofNocardioidessp. SP12, an atrazine-degrading bacterial strain possessing the genetrzNfrom bulk- and maize rhizosphere soil. FEMS Microbiology Letters, 2003, 221, 111-117.	1.8	95
141	Î13C Values of Grasses as a Novel Indicator of Pollution by Fossil-Fuel-Derived Greenhouse Gas CO2in Urban Areas. Environmental Science & Technology, 2003, 37, 87-89.	10.0	46
142	Introduction to Environmental Chemistry Letters. Environmental Chemistry Letters, 2003, 1, 1-1.	16.2	1
143	Contamination of Pastures by Polycyclic Aromatic Hydrocarbons (PAHs) in the Vicinity of a Highway. Journal of Agricultural and Food Chemistry, 2003, 51, 4841-4845.	5.2	54
144	Portal absorption of 14C after ingestion of spiked milk with 14C-phenanthrene, 14C-benzo[a]pyrene or 14C-TCDD in growing pigs. Chemosphere, 2002, 48, 843-848.	8.2	32

#	Article	IF	CITATIONS
145	Phytoremediation of polyaromatic hydrocarbons, anilines and phenols. Environmental Science and Pollution Research, 2002, 9, 29-47.	5.3	265
146	13C/12C composition, a novel parameter to study the downward migration of paper sludge in soilsâ€. Geochemical Transactions, 2002, 3, 1.	0.7	0
147	δ13C of plant-derived n-alkanes in soil particle-size fractions. Organic Geochemistry, 2001, 32, 253-258.	1.8	72
148	Milkâ^'Blood Transfer of14C-Tagged Polycyclic Aromatic Hydrocarbons (PAHs) in Pigs. Journal of Agricultural and Food Chemistry, 2001, 49, 2493-2496.	5.2	25
149	Identification of Bound Alcohols in Soil Humic Acids by Gas Chromatography-Mass Spectrometry. European Journal of Mass Spectrometry, 2000, 6, 439-441.	1.0	4
150	Gas Chromatography-Mass Spectrometry Study of Polycyclic Aromatic Hydrocarbons in Grass and Milk from Urban and Rural Farms. European Journal of Mass Spectrometry, 2000, 6, 457-460.	1.0	41
151	Compound-specific isotope analysis. Application to archaelogy, biomedical sciences, biosynthesis, environment, extraterrestrial chemistry, food science, forensic science, humic substances, microbiology, organic geochemistry, soil science and sport. Rapid Communications in Mass Spectrometry, 2000, 14, 1337-1344.	1.5	114
152	Polycyclic aromatic hydrocarbons in highway plants and soils. Evidence for a local distillation effect. Analusis - European Journal of Analytical Chemistry, 2000, 28, 290-293.	0.4	51
153	Mass Spectrometry for the study of natural mechanisms. Analusis - European Journal of Analytical Chemistry, 2000, 28, 257-258.	0.4	0
154	Depositional environment of a Kimmeridgian carbonate 'black band' (Akkuyu Formation, south-western) Tj ETQq	0 0 0 rgBT 3.1	/Overlock 10
155	Fossil Fuel Biomarkers in Sewage Sludges: Environmental Significance. Die Naturwissenschaften, 1999, 86, 484-488.	1.6	7
156	Phytotoxicity of ancient gaswork soils. Effect of polycyclic aromatic hydrocarbons (PAHs) on plant germination. Organic Geochemistry, 1999, 30, 963-969.	1.8	139
157	The Role of Plants in the Remediation of Contaminated Soils. , 1999, , 429-449.		8
158	A novel model of humin. Analusis - European Journal of Analytical Chemistry, 1999, 27, 385-386.	0.4	11
159	Organic geochemistry of sewage sludge. I. Lipid fractionation by thin layer chromatography. Analusis - European Journal of Analytical Chemistry, 1999, 27, 396-397.	0.4	4
160	Temporal pools of individual organic substances in soil. Analusis - European Journal of Analytical Chemistry, 1999, 27, 442-446.	0.4	11
161	Isotope and Biosynthetic Evidence for the Origin of Long-Chain Aliphatic Lipids in Soils. Die Naturwissenschaften, 1998, 85, 76-77.	1.6	22
162	Plant Wax n-Alkanes Trapped in Soil Humin by Noncovalent Bonds. Die Naturwissenschaften, 1998, 85, 449-452.	1.6	48

#	Article	IF	CITATIONS
163	Occurrence of Biomarkers and Straight-Chain Biopolymers in Humin: Implication for the Origin of Soil Organic Matter. Die Naturwissenschaften, 1998, 85, 497-501.	1.6	40
164	A novel pathway of soil organic matter formation by selective preservation of resistant straight-chain biopolymers: chemical and isotope evidence. Organic Geochemistry, 1998, 28, 411-415.	1.8	149
165	Fossil fuel biomarkers in plant waxes as pollution parameters. Science of the Total Environment, 1998, 222, 201-204.	8.0	20
166	Molecular, 13C, and 14C evidence for the allochthonous and ancient origin of C16î—,C18 n-alkanes in modern soils. Geochimica Et Cosmochimica Acta, 1997, 61, 1891-1898.	3.9	74
167	Ancient polycyclic aromatic hydrocarbons in modern soils: 13C, 14C and biomarker evidence. Organic Geochemistry, 1997, 26, 353-359.	1.8	104
168	Heterogeneous Turnover of Molecular Organic Substances from Crop Soils as Revealed by 13 C Labeling at Natural Abundance with Zea mays. Die Naturwissenschaften, 1997, 84, 23-25.	1.6	34
169	Resistant ultralaminae in soils. Organic Geochemistry, 1996, 25, 263-265.	1.8	15
170	13C Labelling of soil n-hentriacontane (C31) by maize cultivation. Tetrahedron Letters, 1995, 36, 529-530.	1.4	21
171	13C and 14C evidence of pollution of a soil by fossil fuel and reconstruction of the composition of the pollutant. Organic Geochemistry, 1995, 23, 969-973.	1.8	46
172	Isotope evidence for soil organic carbon pools with distinct turnover rates—ll. Humic substances. Organic Geochemistry, 1995, 23, 845-847.	1.8	23
173	Stable carbon isotope evidence for the microbial origin of C14î—,C18 n-alkanoic acids in soils. Organic Geochemistry, 1995, 23, 849-852.	1.8	87
174	Unexpected 13C-enrichment of organic components from wheat crop soils: evidence for the in situ origin of soil organic matter. Organic Geochemistry, 1995, 23, 865-868.	1.8	88
175	Unexpected 13C-enrichment of organic components from wheat crop soils: evidence for the in situ origin of soil organic matter. Organic Geochemistry, 1995, 23, 865-868.	1.8	2
176	Synthesis of triaromatic steroid hydrocarbons methylated at position 2, 3 or 6: molecular fossils of yet unknown biological origin. Tetrahedron, 1994, 50, 1731-1744.	1.9	18
177	A molecular and isotopic study of the organic matter from the Paris Basin, France. Geochimica Et Cosmochimica Acta, 1994, 58, 209-221.	3.9	36
178	Partial resolution of sources of n-alkanes in the saline portion of the Parachute Creek Member, Green River Formation (Piceance Creek Basin, Colorado). Organic Geochemistry, 1994, 21, 645-659.	1.8	100
179	Possible algal origin of long chain odd n-alkanes in immature sediments as revealed by distributions and carbon isotope ratios. Organic Geochemistry, 1994, 22, 1023-1027.	1.8	116
180	Accelerated transformation of organic matter below the silica transition zone in immature sediments from the Japan Sea. Organic Geochemistry, 1994, 21, 517-523.	1.8	12

#	Article	IF	CITATIONS
181	Isotope and molecular evidence for direct input of maize leaf wax n-alkanes into crop soils. Organic Geochemistry, 1994, 22, 349-351.	1.8	64
182	An isotopic biogeochemical study of the Green River oil shale. Organic Geochemistry, 1992, 19, 265-276.	1.8	173
183	Tracing biogenic links of natural organic substances at the molecular level with stable carbon isotopes : n-Alkanes and n-Alkanoic acids from sediments. Tetrahedron Letters, 1992, 33, 8093-8094.	1.4	11
184	Enhanced resolution of organic compounds from sediments by isotopic gas chromatography—combustion—mass spectrometry. Journal of Chromatography A, 1991, 585, 177-180.	3.7	15
185	Occurrence of 2-methyl-, 3-methyl- and 6-methyltriaromatic steroid hydrocarbons in geological samples Tetrahedron Letters, 1990, 31, 3937-3940.	1.4	19
186	The underground industry of wastewater adulteration: how to trick legal testing with COD removers. Environmental Chemistry Letters, 0, , 1.	16.2	6
187	Higher efficiency of triethanolamine-grafted anion exchange membranes for acidic wastewater treatment. , 0, 197, 41-51.		11
188	Wastewater technology attenuates the toxicity of shisha smoking. Environmental Chemistry Letters, 0, , .	16.2	1