Colin Logie

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6479519/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	The gene regulation knowledge commons: the action area of GREEKC. Biochimica Et Biophysica Acta - Gene Regulatory Mechanisms, 2022, 1865, 194768.	1.9	3
2	Fibronectin-functionalization of 3D collagen networks supports immune tolerance and inflammation suppression in human monocyte-derived macrophages. Biomaterials, 2021, 268, 120498.	11.4	16
3	Integration of transcription coregulator complexes with sequence-specific DNA-binding factor interactomes. Biochimica Et Biophysica Acta - Gene Regulatory Mechanisms, 2021, 1864, 194749.	1.9	6
4	Sequence Ontology terminology for gene regulation. Biochimica Et Biophysica Acta - Gene Regulatory Mechanisms, 2021, 1864, 194745.	1.9	5
5	Gene Ontology representation for transcription factor functions. Biochimica Et Biophysica Acta - Gene Regulatory Mechanisms, 2021, 1864, 194752.	1.9	17
6	The Gene Ontology resource: enriching a GOld mine. Nucleic Acids Research, 2021, 49, D325-D334.	14.5	2,416
7	Formalization of gene regulation knowledge using ontologies and gene ontology causal activity models. Biochimica Et Biophysica Acta - Gene Regulatory Mechanisms, 2021, 1864, 194766.	1.9	6
8	A GO catalogue of human DNA-binding transcription factors. Biochimica Et Biophysica Acta - Gene Regulatory Mechanisms, 2021, 1864, 194765.	1.9	15
9	Retinoic acid signaling drives differentiation toward the absorptive lineage in colorectal cancer. IScience, 2021, 24, 103444.	4.1	10
10	Spatial patterns of CTCF sites define the anatomy of TADs and their boundaries. Genome Biology, 2020, 21, 197.	8.8	45
11	The alarmin S100A9 hampers osteoclast differentiation from human circulating precursors by reducing the expression of RANK. FASEB Journal, 2019, 33, 10104-10115.	0.5	9
12	Epigenetic modulation of a hardwired 3D chromatin landscape in two naive states of pluripotency. Nature Cell Biology, 2019, 21, 568-578.	10.3	55
13	Underreported and unknown student harassment at the Faculty of Science. PLoS ONE, 2019, 14, e0215067.	2.5	10
14	Extensive epigenomic integration of the glucocorticoid response in primary human monocytes and in vitro derived macrophages. Scientific Reports, 2019, 9, 2772.	3.3	27
15	The Gene Ontology Resource: 20 years and still GOing strong. Nucleic Acids Research, 2019, 47, D330-D338.	14.5	3,474
16	HDAC11 is a regulator of diverse immune functions. Biochimica Et Biophysica Acta - Gene Regulatory Mechanisms, 2018, 1861, 54-59.	1.9	70
17	Multi-omics profiling reveals a distinctive epigenome signature for high-risk acute promyelocytic leukemia. Oncotarget, 2018, 9, 25647-25660.	1.8	13
18	Mutant p63 Affects Epidermal Cell Identity through Rewiring the Enhancer Landscape. Cell Reports, 2018, 25, 3490-3503.e4.	6.4	41

COLIN LOGIE

#	Article	IF	CITATIONS
19	Dendritic Cells Actively Limit Interleukin-10 Production Under Inflammatory Conditions via DC-SCRIPT and Dual-Specificity Phosphatase 4. Frontiers in Immunology, 2018, 9, 1420.	4.8	16
20	Twenty-First Century Glucocorticoid Receptor Molecular Biology. , 2018, , .		0
21	Combined HAT/EZH2 modulation leads to cancer-selective cell death. Oncotarget, 2018, 9, 25630-25646.	1.8	5
22	Cellular reprogramming for clinical cartilage repair. Cell Biology and Toxicology, 2017, 33, 329-349.	5.3	27
23	We Can Still Be Friends: IFN-Î ³ Breaks Up Macrophage Enhancers. Immunity, 2017, 47, 209-211.	14.3	2
24	Epigenetic memory: A macrophage perspective. Seminars in Immunology, 2016, 28, 359-367.	5.6	49
25	Glutaminolysis and Fumarate Accumulation Integrate Immunometabolic and Epigenetic Programs in Trained Immunity. Cell Metabolism, 2016, 24, 807-819.	16.2	584
26	β-Glucan Reverses the Epigenetic State of LPS-Induced Immunological Tolerance. Cell, 2016, 167, 1354-1368.e14.	28.9	467
27	Glucocorticoid receptor and nuclear factor kappa-b affect three-dimensional chromatin organization. Genome Biology, 2015, 16, 264.	8.8	48
28	Epigenetic programming of monocyte-to-macrophage differentiation and trained innate immunity. Science, 2014, 345, 1251086.	12.6	1,338
29	mTOR- and HIF-1α–mediated aerobic glycolysis as metabolic basis for trained immunity. Science, 2014, 345, 1250684.	12.6	1,517
30	Sequence-based prediction of single nucleosome positioning and genome-wide nucleosome occupancy. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, E2514-22.	7.1	70
31	Chromatin accessibility, p300, and histone acetylation define PML-RARα and AML1-ETO binding sites in acute myeloid leukemia. Blood, 2012, 120, 3058-3068.	1.4	60
32	Candida albicans Infection Affords Protection against Reinfection via Functional Reprogramming of Monocytes. Cell Host and Microbe, 2012, 12, 223-232.	11.0	926
33	SS18 Together with Animal-Specific Factors Defines Human BAF-Type SWI/SNF Complexes. PLoS ONE, 2012, 7, e33834.	2.5	102
34	The human histone H3 complement anno 2011. Biochimica Et Biophysica Acta - Gene Regulatory Mechanisms, 2011, 1809, 577-586.	1.9	28
35	Genome-wide functions of PML–RARα in acute promyelocytic leukaemia. British Journal of Cancer, 2011, 104, 554-558.	6.4	54
36	Death Receptor Pathway Activation and Increase of ROS Production by the Triple Epigenetic Inhibitor UVI5008. Molecular Cancer Therapeutics, 2011, 10, 2394-2404.	4.1	49

COLIN LOGIE

#	Article	IF	CITATIONS
37	The Decade of the Epigenomes?. Genes and Cancer, 2011, 2, 680-687.	1.9	16
38	Histone H3 Serine 57 and Lysine 56 Interplay in Transcription Elongation and Recovery from S-Phase Stress. PLoS ONE, 2010, 5, e10851.	2.5	17
39	Multiple Aspects of ATP-Dependent Nucleosome Translocation by RSC and Mi-2 Are Directed by the Underlying DNA Sequence. PLoS ONE, 2009, 4, e6345.	2.5	40
40	Recruitment of a chromatin remodelling complex by the Hog1 MAP kinase to stress genes. EMBO Journal, 2009, 28, 326-336.	7.8	104
41	Single-molecule force spectroscopy reveals a highly compliant helical folding for the 30-nm chromatin fiber. Nature Structural and Molecular Biology, 2009, 16, 534-540.	8.2	230
42	Identification of potentially hazardous human gene products in GMO risk assessment. Environmental Biosafety Research, 2008, 7, 1-9.	1.1	14
43	dCHD3, a Novel ATP-Dependent Chromatin Remodeler Associated with Sites of Active Transcription. Molecular and Cellular Biology, 2008, 28, 2745-2757.	2.3	48
44	Genetic Identification of a Network of Factors that Functionally Interact with the Nucleosome Remodeling ATPase ISWI. PLoS Genetics, 2008, 4, e1000089.	3.5	28
45	The new frontier in cancer research: Deciphering cancer epigenetics. International Journal of Biochemistry and Cell Biology, 2007, 39, 1450-1461.	2.8	17
46	The ins and outs of ATP-dependent chromatin remodeling in budding yeast: Biophysical and proteomic perspectives. Biochimica Et Biophysica Acta Gene Regulatory Mechanisms, 2007, 1769, 153-171.	2.4	38
47	Single-Pair FRET Microscopy Reveals Mononucleosome Dynamics. Journal of Fluorescence, 2007, 17, 785-795.	2.5	105
48	Reverse Genetic Analysis of the Yeast RSC Chromatin Remodeler Reveals a Role for RSC3 and SNF5 Homolog 1 in Ploidy Maintenance. PLoS Genetics, 2007, 3, e92.	3.5	39
49	Histone H3 Lysine 56 Acetylation: A New Twist in the Chromosome Cycle. Cell Cycle, 2006, 5, 2602-2608.	2.6	45
50	A Feed-Forward Repression Mechanism Anchors the Sin3/Histone Deacetylase and N-CoR/SMRT Corepressors on Chromatin. Molecular and Cellular Biology, 2006, 26, 5226-5236.	2.3	26
51	Characterization of Lysine 56 of Histone H3 as an Acetylation Site in Saccharomyces cerevisiae. Journal of Biological Chemistry, 2005, 280, 25949-25952.	3.4	105
52	In Vitro Targeting Reveals Intrinsic Histone Tail Specificity of the Sin3/Histone Deacetylase and N-CoR/SMRT Corepressor Complexes. Molecular and Cellular Biology, 2004, 24, 2364-2372.	2.3	43
53	Phosphorylation of linker histones regulates ATP-dependent chromatin remodeling enzymes. Nature Structural Biology, 2002, 9, 263-267.	9.7	160
54	The Interactions of Yeast SWI/SNF and RSC with the Nucleosome before and after Chromatin Remodeling. Journal of Biological Chemistry, 2001, 276, 12636-12644.	3.4	49

COLIN LOGIE

#	Article	IF	CITATIONS
55	Recruitment of chromatin remodeling machines. , 2000, 78, 179-185.		72
56	Functional Delineation of Three Groups of the ATP-dependent Family of Chromatin Remodeling Enzymes. Journal of Biological Chemistry, 2000, 275, 18864-18870.	3.4	95
57	SWI-SNF-Mediated Nucleosome Remodeling: Role of Histone Octamer Mobility in the Persistence of the Remodeled State. Molecular and Cellular Biology, 2000, 20, 3058-3068.	2.3	94
58	The Core Histone N-Terminal Domains Are Required for Multiple Rounds of Catalytic Chromatin Remodeling by the SWI/SNF and RSC Complexesâ€. Biochemistry, 1999, 38, 2514-2522.	2.5	73
59	Purification and biochemical properties of yeast SWI/SNF complex. Methods in Enzymology, 1999, 304, 726-741.	1.0	54
60	Recruitment of the SWI/SNF chromatin remodeling complex by transcriptional activators. Genes and Development, 1999, 13, 2369-2374.	5.9	204
61	Positive and Negative Discrimination of Estrogen Receptor Agonists and Antagonists Using Site-Specific DNA Recombinase Fusion Proteins. Molecular Endocrinology, 1998, 12, 1120-1132.	3.7	13
62	Positive and Negative Discrimination of Estrogen Receptor Agonists and Antagonists Using Site-Specific DNA Recombinase Fusion Proteins. Molecular Endocrinology, 1998, 12, 1120-1132.	3.7	3
63	FLP Recombinase/Estrogen Receptor Fusion Proteins Require the Receptor D Domain for Responsiveness to Antagonists, but not Agonists. Molecular Endocrinology, 1997, 11, 950-961.	3.7	20
64	Catalytic activity of the yeast SWI/SNF complex on reconstituted nucleosome arrays. EMBO Journal, 1997, 16, 6772-6782.	7.8	169
65	FLP Recombinase/Estrogen Receptor Fusion Proteins Require the Receptor D Domain for Responsiveness to Antagonists, but not Agonists. Molecular Endocrinology, 1997, 11, 950-961.	3.7	8
66	Regulation of nuclear receptors by agonists and antagonists. Current Opinion in Endocrinology, Diabetes and Obesity, 1996, 3, 397-402.	0.6	2
67	Excision of Ets by an inducible site-specific recombinase causes differentiation of Myb–Ets-transformed hematopoietic progenitors. Current Biology, 1996, 6, 866-872.	3.9	17
68	Ligand-regulated site-specific recombination Proceedings of the National Academy of Sciences of the United States of America, 1995, 92, 5940-5944.	7.1	173
69	Synthetic Point Mutagenesis. , 0, , .		Ο