
Vittorio Morandi

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6478777/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Science and technology roadmap for graphene, related two-dimensional crystals, and hybrid systems. Nanoscale, 2015, 7, 4598-4810.	5.6	2,452
2	Production and processing of graphene and related materials. 2D Materials, 2020, 7, 022001.	4.4	333
3	Graphene: The Exfoliation of Graphene in Liquids by Electrochemical, Chemical, and Sonicationâ€Assisted Techniques: A Nanoscale Study (Adv. Funct. Mater. 37/2013). Advanced Functional Materials, 2013, 23, 4756-4756.	14.9	184
4	Conversion of 5-hydroxymethylfurfural to 2,5-furandicarboxylic acid over Au-based catalysts: Optimization of active phase and metal–support interaction. Applied Catalysis B: Environmental, 2015, 163, 520-530.	20.2	177
5	Surfactant-free single-layer graphene in water. Nature Chemistry, 2017, 9, 347-352.	13.6	175
6	Nanoscale insight into the exfoliation mechanism of graphene with organic dyes: effect of charge, dipole and molecular structure. Nanoscale, 2013, 5, 4205.	5.6	116
7	Size-Dependent Photoluminescence Efficiency of Silicon Nanocrystal Quantum Dots. Journal of Physical Chemistry C, 2017, 121, 23240-23248.	3.1	104
8	Fragmentation and exfoliation of 2-dimensional materials: a statistical approach. Nanoscale, 2014, 6, 5926-5933.	5.6	100
9	Light-enhanced liquid-phase exfoliation and current photoswitching in graphene–azobenzene composites. Nature Communications, 2016, 7, 11090.	12.8	97
10	NiMoO ₄ @Co ₃ O ₄ Core–Shell Nanorods: In Situ Catalyst Reconstruction toward High Efficiency Oxygen Evolution Reaction. Advanced Energy Materials, 2021, 11, 2101324.	19.5	97
11	Engineering interfacial structure in "Giant―PbS/CdS quantum dots for photoelectrochemical solar energy conversion. Nano Energy, 2016, 30, 531-541.	16.0	88
12	A Supramolecular Strategy to Leverage the Liquidâ€Phase Exfoliation of Graphene in the Presence of Surfactants: Unraveling the Role of the Length of Fatty Acids. Small, 2015, 11, 1691-1702.	10.0	87
13	Facile covalent functionalization of graphene oxide using microwaves: bottom-up development of functional graphitic materials. Journal of Materials Chemistry, 2010, 20, 9052.	6.7	82
14	Graphene solutions. Chemical Communications, 2011, 47, 5470-5472.	4.1	78
15	Liquid-Phase Exfoliation of Graphite into Single- and Few-Layer Graphene with α-Functionalized Alkanes. Journal of Physical Chemistry Letters, 2016, 7, 2714-2721.	4.6	73
16	Self-Powered Photodetectors Based on Core–Shell ZnO–Co ₃ O ₄ Nanowire Heterojunctions. ACS Applied Materials & Interfaces, 2019, 11, 23454-23462.	8.0	71
17	Graphene-based coatings on polymer films for gas barrier applications. Carbon, 2016, 96, 503-512.	10.3	69
18	Conductive Sub-micrometric Wires of Platinum-Carbonyl Clusters Fabricated by Soft-Lithography. Journal of the American Chemical Society, 2008, 130, 1177-1182.	13.7	68

#	Article	IF	CITATIONS
19	High-Temperature Growth of Graphene Films on Copper Foils by Ethanol Chemical Vapor Deposition. Journal of Physical Chemistry C, 2013, 117, 21569-21576.	3.1	68
20	Hydrogen Desorption Below 150 °C in MgH ₂ –TiH ₂ Composite Nanoparticles: Equilibrium and Kinetic Properties. Journal of Physical Chemistry C, 2017, 121, 11166-11177.	3.1	68
21	Benchmarking of graphene-based materials: real commercial products versus ideal graphene. 2D Materials, 2019, 6, 025006.	4.4	68
22	Advanced Electrocatalysts for Hydrogen Evolution Reaction Based on Core–Shell MoS ₂ /TiO ₂ Nanostructures in Acidic and Alkaline Media. ACS Applied Energy Materials, 2019, 2, 2053-2062.	5.1	67
23	Synergic Exfoliation of Graphene with Organic Molecules and Inorganic Ions for the Electrochemical Production of Flexible Electrodes. ChemPlusChem, 2014, 79, 439-446.	2.8	60
24	Design of nano-sized FeOx and Au/FeOx catalysts supported on CeO2 for total oxidation of VOC. Applied Catalysis A: General, 2011, 395, 10-18.	4.3	59
25	Long-Lived Photoinduced Polarons in Organohalide Perovskites. Journal of Physical Chemistry Letters, 2017, 8, 3081-3086.	4.6	59
26	Folded Graphene Membranes: Mapping Curvature at the Nanoscale. Nano Letters, 2012, 12, 5207-5212.	9.1	55
27	Ag ₂ S/MoS ₂ Nanocomposites Anchored on Reduced Graphene Oxide: Fast Interfacial Charge Transfer for Hydrogen Evolution Reaction. ACS Applied Materials & Interfaces, 2019, 11, 22380-22389.	8.0	55
28	Dual emission in asymmetric "giant―PbS/CdS/CdS core/shell/shell quantum dots. Nanoscale, 2016, 8, 4217-4226.	5.6	54
29	Structural and gas-sensing characterization of tungsten oxide nanorods and nanoparticles. Sensors and Actuators B: Chemical, 2011, 153, 340-346.	7.8	53
30	High surface area graphene foams by chemical vapor deposition. 2D Materials, 2016, 3, 045013.	4.4	53
31	Catalytic combustion of toluene over cluster-derived gold/iron catalysts. Applied Catalysis A: General, 2010, 372, 138-146.	4.3	52
32	Regenerable Resistive Switching in Silicon Oxide Based Nanojunctions. Advanced Materials, 2012, 24, 1197-1201.	21.0	52
33	The Exfoliation of Graphene in Liquids by Electrochemical, Chemical, and Sonicationâ€Assisted Techniques: A Nanoscale Study. Advanced Functional Materials, 2013, 23, 4684-4693.	14.9	50
34	Solutions of fully exfoliated individual graphene flakes in low boiling point solvents. Soft Matter, 2012, 8, 7882.	2.7	46
35	Hematite nanostructures: An old material for a new story. Simultaneous photoelectrochemical oxidation of benzylamine and hydrogen production through Ti doping. Nano Energy, 2019, 61, 36-46.	16.0	46
36	Decorating vertically aligned MoS2 nanoflakes with silver nanoparticles for inducing a bifunctional electrocatalyst towards oxygen evolution and oxygen reduction reaction. Nano Energy, 2021, 81, 105664.	16.0	46

#	Article	IF	CITATIONS
37	Gold Nanoparticles Uptake and Cytotoxicity Assessed on Rat Liver Precision-Cut Slices. Toxicological Sciences, 2012, 128, 186-197.	3.1	43
38	Graphene as transparent front contact for dye sensitized solar cells. Solar Energy Materials and Solar Cells, 2015, 135, 99-105.	6.2	40
39	Synthesis and properties of ZnTe and ZnTe/ZnS core/shell semiconductor nanocrystals. Journal of Materials Chemistry C, 2014, 2, 2877-2886.	5.5	39
40	Rapid and highly efficient growth of graphene on copper by chemical vapor deposition of ethanol. Thin Solid Films, 2014, 571, 139-144.	1.8	38
41	Electrochemically exfoliated graphene oxide/iron oxide composite foams for lithium storage, produced by simultaneous graphene reduction and Fe(OH)3 condensation. Carbon, 2015, 84, 254-262.	10.3	38
42	Permeability and Selectivity of PPO/Graphene Composites as Mixed Matrix Membranes for CO2 Capture and Gas Separation. Polymers, 2018, 10, 129.	4.5	38
43	Effects of Ta/Nb-doping on titania-based thin films for gas-sensing. Sensors and Actuators B: Chemical, 2005, 108, 21-28.	7.8	34
44	Newly developed electrochemical synthesis of Co-based layered double hydroxides: toward noble metal-free electro-catalysis. Journal of Materials Chemistry A, 2019, 7, 11241-11249.	10.3	34
45	Novel Keplerate type polyoxometalate-surfactant-graphene hybrids as advanced electrode materials for supercapacitors. Energy Storage Materials, 2019, 17, 186-193.	18.0	34
46	Gas-phase synthesis of Mg–Ti nanoparticles for solid-state hydrogen storage. Physical Chemistry Chemical Physics, 2016, 18, 141-148.	2.8	33
47	Backscattered electron imaging and scanning transmission electron microscopy imaging of multi-layers. Ultramicroscopy, 2003, 94, 89-98.	1.9	31
48	Micron-sized [6,6]-phenyl C61 butyric acid methyl ester crystals grown by dip coating in solvent vapour atmosphere: interfaces for organic photovoltaics. Physical Chemistry Chemical Physics, 2010, 12, 4473.	2.8	31
49	Poly(3-hexylthiophene) Nanoparticles Containing Thiophene- <i>S</i> , <i>S</i> -dioxide: Tuning of Dimensions, Optical and Redox Properties, and Charge Separation under Illumination. ACS Nano, 2017, 11, 1991-1999.	14.6	31
50	Interfaces within biphasic nanoparticles give a boost to magnesium-based hydrogen storage. Nano Energy, 2020, 72, 104654.	16.0	31
51	Graphene–organic hybrids as processable, tunable platforms for pH-dependent photoemission, obtained by a new modular approach. Journal of Materials Chemistry, 2012, 22, 18237.	6.7	30
52	Nanostructured Co3O4 electrocatalyst for OER: The role of organic polyelectrolytes as soft templates. Electrochimica Acta, 2021, 398, 139338.	5.2	30
53	NiCo2O4 nanostructures loaded onto pencil graphite rod: An advanced composite material for oxygen evolution reaction. International Journal of Hydrogen Energy, 2022, 47, 6650-6665.	7.1	30
54	MgO as promoter for electrocatalytic activities of Co3O4–MgO composite via abundant oxygen vacancies and Co2+ ions towards oxygen evolution reaction. International Journal of Hydrogen Energy, 2023, 48, 12672-12682.	7.1	30

#	Article	IF	CITATIONS
55	Taguchi optimized synthesis of graphene films by copper catalyzed ethanol decomposition. Diamond and Related Materials, 2014, 41, 73-78.	3.9	29
56	Chemical Vapor Deposited Graphene-Based Derivative As High-Performance Hole Transport Material for Organic Photovoltaics. ACS Applied Materials & amp; Interfaces, 2016, 8, 23844-23853.	8.0	29
57	Selective Gas Permeation in Graphene Oxide–Polymer Self-Assembled Multilayers. ACS Applied Materials & Interfaces, 2018, 10, 11242-11250.	8.0	29
58	Ni/Al Layered Double Hydroxide and Carbon Nanomaterial Composites for Glucose Sensing. ACS Applied Nano Materials, 2019, 2, 143-155.	5.0	29
59	Contrast and resolution versus specimen thickness in low energy scanning transmission electron microscopy. Journal of Applied Physics, 2007, 101, 114917.	2.5	28
60	Ultrafast and Highly Sensitive Chemically Functionalized Graphene Oxide-Based Humidity Sensors: Harnessing Device Performances via the Supramolecular Approach. ACS Applied Materials & Interfaces, 2020, 12, 44017-44025.	8.0	28
61	Synthesis of small gold nanoparticles: Au(i) disproportionation catalyzed by a persulfurated coronene dendrimer. Chemical Communications, 2007, , 4167.	4.1	27
62	Additive nanoscale embedding of functional nanoparticles on silicon surface. Nanoscale, 2010, 2, 2069.	5.6	27
63	Silica-supported silver nanoparticles as an efficient catalyst for aromatic C–H alkylation and fluoroalkylation. Dalton Transactions, 2018, 47, 9608-9616.	3.3	27
64	Mercaptosilane-Passivated CulnS2 Quantum Dots for Luminescence Thermometry and Luminescent Labels. ACS Applied Nano Materials, 2019, 2, 2426-2436.	5.0	26
65	Microwave-Assisted vs. Conventional Hydrothermal Synthesis of MoS2 Nanosheets: Application towards Hydrogen Evolution Reaction. Crystals, 2020, 10, 1040.	2.2	26
66	Time and Temperature Dependence of CdS Nanoparticles Grown in a Polystyrene Matrix. Journal of Nanomaterials, 2012, 2012, 1-11.	2.7	25
67	Photoinduced Processes between Pyrene-Functionalized Silicon Nanocrystals and Carbon Allotropes. Chemistry of Materials, 2015, 27, 4390-4397.	6.7	25
68	Enhancement of electrical and thermal conductivity of Su-8 photocrosslinked coatings containing graphene. Progress in Organic Coatings, 2015, 86, 143-146.	3.9	25
69	Two step synthesis of TiO2–Co3O4 composite for efficient oxygen evolution reaction. International Journal of Hydrogen Energy, 2021, 46, 9110-9122.	7.1	25
70	Supramolecular self-assembly of graphene oxide and metal nanoparticles into stacked multilayers by means of a multitasking protein ring. Nanoscale, 2016, 8, 6739-6753.	5.6	24
71	Low-Energy STEM of Multilayers and Dopant Profiles. Microscopy and Microanalysis, 2005, 11, 97-104.	0.4	23
72	Controllable, eco-friendly, synthesis of highly crystalline 2D-MoS ₂ and clarification of the role of growth-induced strain. 2D Materials, 2018, 5, 035035.	4.4	23

#	Article	IF	CITATIONS
73	Dispersion Stability and Surface Morphology Study of Electrochemically Exfoliated Bilayer Graphene Oxide. Journal of Physical Chemistry C, 2019, 123, 15122-15130.	3.1	23
74	Controlling the Functional Properties of Oligothiophene Crystalline Nano/Microfibers via Tailoring of the Selfâ€Assembling Molecular Precursors. Advanced Functional Materials, 2018, 28, 1801946.	14.9	21
75	Biomimetic graphene for enhanced interaction with the external membrane of astrocytes. Journal of Materials Chemistry B, 2018, 6, 5335-5342.	5.8	21
76	ITO-Free Organic Light-Emitting Transistors with Graphene Gate Electrode. ACS Photonics, 2014, 1, 1082-1088.	6.6	20
77	Photoactive Dendrimer for Water Photoreduction: A Scaffold to Combine Sensitizers and Catalysts. Journal of Physical Chemistry Letters, 2014, 5, 798-803.	4.6	20
78	Water-soluble silicon nanocrystals as NIR luminescent probes for time-gated biomedical imaging. Nanoscale, 2020, 12, 7921-7926.	5.6	20
79	Electrosynthesis of Ni/Al layered double hydroxide and reduced graphene oxide composites for the development of hybrid capacitors. Electrochimica Acta, 2021, 365, 137294.	5.2	19
80	Images of dopant profiles in low-energy scanning transmission electron microscopy. Applied Physics Letters, 2002, 81, 4535-4537.	3.3	18
81	Reductive dismantling and functionalization of carbon nanohorns. Chemical Communications, 2015, 51, 5017-5019.	4.1	18
82	Graphene as transparent conducting layer for high temperature thin film device applications. Solar Energy Materials and Solar Cells, 2015, 138, 35-40.	6.2	18
83	Scanning electron microscopy of thinned specimens: From multilayers to biological samples. Applied Physics Letters, 2007, 90, 163113.	3.3	17
84	Control of the size and density of ZnO-nanorods grown onto graphene nanoplatelets in aqueous suspensions. RSC Advances, 2016, 6, 83217-83225.	3.6	17
85	Chirality dependent surface adhesion of single-walled carbon nanotubes on graphene surfaces. Carbon, 2010, 48, 3050-3056.	10.3	16
86	Large-area patterning of substrate-conformal MoS2 nano-trenches. Nano Research, 2019, 12, 1851-1854.	10.4	16
87	A robust, modular approach to produce graphene–MO _x multilayer foams as electrodes for Li-ion batteries. Nanoscale, 2019, 11, 5265-5273.	5.6	16
88	Quantitative determination of the dopant distribution in Si ultrashallow junctions by tilted sample annular dark field scanning transmission electron microscopy. Applied Physics Letters, 2008, 92, 261907.	3.3	15
89	Surface electrostatic potentials in carbon nanotubes and graphene membranes investigated with electron holography. Carbon, 2011, 49, 1423-1429.	10.3	15
90	Self-assembly and electrical properties of a novel heptameric thiophene–benzothiadiazole based architectures. Chemical Communications, 2012, 48, 12162.	4.1	15

#	Article	IF	CITATIONS
91	Growth and properties of nanostructured titanium dioxide deposited by supersonic plasma jet deposition. Applied Surface Science, 2017, 425, 407-415.	6.1	15
92	Bioinspired Design of Grapheneâ€Based Materials. Advanced Functional Materials, 2020, 30, 2007458.	14.9	15
93	Facile NiCo2S4/C nanocomposite: an efficient material for water oxidation. Tungsten, 2020, 2, 403-410.	4.8	15
94	Spatial resolution and energy filtering of backscattered electron images in scanning electron microscopy. Ultramicroscopy, 2001, 88, 139-150.	1.9	14
95	Nano-graphene growth and texturing by Nd:YAG pulsed laser ablation of graphite on Silicon. Journal of Physics: Conference Series, 2007, 59, 616-624.	0.4	14
96	Nickel–cobalt bimetallic sulfide NiCo ₂ S ₄ nanostructures for a robust hydrogen evolution reaction in acidic media. RSC Advances, 2020, 10, 22196-22203.	3.6	14
97	Binder-free nanostructured germanium anode for high resilience lithium-ion battery. Electrochimica Acta, 2022, 411, 139832.	5.2	14
98	Graphene–Epoxy Flexible Transparent Capacitor Obtained By Graphene–Polymer Transfer and UVâ€induced Bonding. Macromolecular Rapid Communications, 2014, 35, 355-359.	3.9	13
99	Tailoring of quantum dot emission efficiency by localized surface plasmon polaritons in self-organized mesoscopic rings. Nanoscale, 2014, 6, 741-744.	5.6	13
100	One-Step Synthesis of Metal/Oxide Nanocomposites by Gas Phase Condensation. Nanomaterials, 2019, 9, 219.	4.1	13
101	Scanning electron microscopy of dopant distribution in semiconductors. Applied Physics Letters, 2005, 86, 101916.	3.3	12
102	Microwave-assisted synthesis of Au, Ag and Au-Ag nanoparticles and their catalytic activities for the reduction of nitrophenol. Studies in Surface Science and Catalysis, 2010, , 621-624.	1.5	12
103	Uniform Functionalization of High-Quality Graphene with Platinum Nanoparticles for Electrocatalytic Water Reduction. ChemistryOpen, 2015, 4, 268-273.	1.9	12
104	Large area fabrication of self-standing nanoporous graphene-on-PMMA substrate. Materials Letters, 2016, 184, 47-51.	2.6	12
105	Silica Nanospheres Coated by Ultrasmall Ag0 Nanoparticles for Oxidative Catalytic Application. Colloids and Interface Science Communications, 2017, 21, 1-5.	4.1	12
106	Cooperative and Reversible Anisotropic Assembly of Gold Nanoparticles by Modulation of Noncovalent Interparticle Interactions. ChemNanoMat, 2017, 3, 874-878.	2.8	12
107	High valence transition metal-doped olivine cathodes for superior energy and fast cycling lithium batteries. Journal of Materials Chemistry A, 2020, 8, 25727-25738.	10.3	12
108	Au-Decorated Ce–Ti Mixed Oxides for Efficient CO Preferential Photooxidation. ACS Applied Materials & Interfaces, 2020, 12, 38019-38030.	8.0	12

#	Article	IF	CITATIONS
109	Chrysalis-Like Graphene Oxide Decorated Vanadium-Based Nanoparticles: An Extremely High-Power Cathode for Magnesium Secondary Batteries. Journal of the Electrochemical Society, 2020, 167, 070547.	2.9	11
110	Ge growth on porous silicon: The effect of buffer porosity on the epilayer crystalline quality. Applied Physics Letters, 2014, 105, 122104.	3.3	10
111	Biological application of Compressed Sensing Tomography in the Scanning Electron Microscope. Scientific Reports, 2016, 6, 33354.	3.3	10
112	Reduced graphene oxide-ZnO hybrid composites as photocatalysts: The role of nature of the molecular target in catalytic performance. Ceramics International, 2021, 47, 19346-19355.	4.8	10
113	CdSe Spherical Quantum Dots Stabilised by Thiomalic Acid: Biphasic Wet Synthesis and Characterisation. ChemPhysChem, 2011, 12, 863-870.	2.1	9
114	Bionic synthesis of a magnetic calcite skeletal structure through living foraminifera. Materials Horizons, 2019, 6, 1862-1867.	12.2	9
115	Structure, morphology and magnetic properties of Au/Fe3O4 nanocomposites fabricated by a soft aqueous route. Ceramics International, 2019, 45, 449-456.	4.8	9
116	ZnO Nanostructured Thin Films via Supersonic Plasma Jet Deposition. Coatings, 2020, 10, 788.	2.6	9
117	Processable Thiopheneâ€Based Polymers with Tailored Electronic Properties and their Application in Solidâ€5tate Electrochromic Devices Using Nanoparticle Films. Advanced Electronic Materials, 2021, 7, 2100166.	5.1	9
118	The structural and electronic properties of compound SnmOn clusters studied by the Density Functional Theory. European Physical Journal B, 2006, 51, 307-313.	1.5	8
119	Dopant regions imaging in scanning electron microscopy. Journal of Applied Physics, 2006, 99, 043512.	2.5	8
120	Enhanced Performance of Graphene–Epoxy Flexible Capacitors by Means of Ceramic Fillers. Macromolecular Chemistry and Physics, 2015, 216, 707-713.	2.2	8
121	High yield production of graphene-Fe 2 O 3 nano-composites via electrochemical intercalation of nitromethane and iron chloride, and their application in lithium storage. FlatChem, 2017, 3, 8-15.	5.6	8
122	Controlled Functionalization of Reduced Graphene Oxide Enabled by Microfluidic Reactors. Chemistry of Materials, 2018, 30, 2905-2914.	6.7	8
123	Mechanical and electrical characterization of CVD-grown graphene transferred on chalcogenide Ge2Sb2Te5 layers. Carbon, 2018, 132, 141-151.	10.3	8
124	The role of the capping agent and nanocrystal size in photoinduced hydrogen evolution using CdTe/CdS quantum dot sensitizers. Dalton Transactions, 2020, 49, 10212-10223.	3.3	8
125	Facile deposition of palladium oxide (PdO) nanoparticles on CoNi ₂ S ₄ microstructures towards enhanced oxygen evolution reaction. Nanotechnology, 2022, 33, 275402.	2.6	8
126	Electrochemical Approach for the Production of Layered Double Hydroxides with a Wellâ€Đefined Co/Me ^{III} Ratio. Chemistry - A European Journal, 2019, 25, 16301-16310.	3.3	7

#	Article	IF	CITATIONS
127	Influence of the synthesis conditions on the microstructural, compositional and morphological properties of graphene oxide sheets. Ceramics International, 2020, 46, 22067-22078.	4.8	6
128	Controlled Deposition of Nanostructured Hierarchical TiO2 Thin Films by Low Pressure Supersonic Plasma Jets. Nanomaterials, 2022, 12, 533.	4.1	6
129	A computational study on CO adsorption onto SnO2 small grains. Sensors and Actuators A: Physical, 2006, 126, 56-61.	4.1	5
130	Plasma assisted vapor solid deposition of Co ₃ O ₄ tapered nanorods for energy applications. Journal of Materials Chemistry A, 2019, 7, 26302-26310.	10.3	5
131	Electrosynthesis and characterization of Layered Double Hydroxides on different supports. Applied Clay Science, 2021, 202, 105949.	5.2	5
132	Luminescent silicon nanocrystals appended with photoswitchable azobenzene units. Nanoscale, 2021, 13, 12460-12465.	5.6	5
133	Controllable Synthesis of 2D Nonlayered Cr2S3 Nanosheets and Their Electrocatalytic Activity Toward Oxygen Evolution Reaction. Frontiers in Chemical Engineering, 2021, 3, .	2.7	5
134	NiMoO ₄ @Co ₃ O ₄ Core–Shell Nanorods: In Situ Catalyst Reconstruction toward High Efficiency Oxygen Evolution Reaction (Adv. Energy Mater. 32/2021). Advanced Energy Materials, 2021, 11, 2170128.	19.5	5
135	Microstructural features assessment of different waterlogged wood species by NMR diffusion validated with complementary techniques. Magnetic Resonance Imaging, 2021, 83, 139-151.	1.8	5
136	NiNPs@rGO Nanocomposites as Heterogenous Catalysts for Thiocarboxylation Cross-Coupling Reactions. Synthesis, 0, , .	2.3	5
137	On the spatial resolution and nanoscale feature visibility in scanning electron microscopy. Advances in Imaging and Electron Physics, 2002, , 375-398.	0.2	4
138	Defects in nanocrystalline SnO \$mathsf{_{2}}\$ studied by Tight Binding. European Physical Journal B, 2004, 42, 435-440.	1.5	4
139	CO adsorption onto tin oxide clusters: DFT calculations. Computational Materials Science, 2007, 38, 814-823.	3.0	4
140	Electrical and holographic characterization of gold catalyzed titania-based layers. Journal of the European Ceramic Society, 2007, 27, 4131-4134.	5.7	4
141	Improvement of Dye Solar Cell Efficiency by Photoanode Posttreatment. International Journal of Photoenergy, 2014, 2014, 1-10.	2.5	4
142	Tracking graphene by fluorescence imaging: a tool for detecting multiple populations of graphene in solution. Nanoscale, 2016, 8, 8505-8511.	5.6	4
143	Selective Electrodesorption-Based Atomic Layer Deposition (SEBALD) of Bismuth under Morphological Control. Electrochemical Society Interface, 2018, 27, 77-81.	0.4	4
144	Development of a dedicated instrumentation for electrical and thermal characterization of chemiresistive gas sensors. Review of Scientific Instruments, 2021, 92, 074702.	1.3	4

#	Article	IF	CITATIONS
145	Light-harvesting antennae based on copper indium sulfide (CIS) quantum dots. Nanoscale, 2022, 14, 3013-3019.	5.6	4
146	pH Switchable Water Dispersed Photocatalytic Nanoparticles. Chemistry - A European Journal, 2022, 28, .	3.3	4
147	Novel Cu(I)-5-nitropyridine-2-thiol Cluster with NIR Emission: Structural and Photophysical Characterization. Journal of Physical Chemistry C, 2022, 126, 10190-10198.	3.1	4
148	A computational study on nanocrystalline SnO2: Adsorption of CO and O2 onto defective nanograins. Applied Surface Science, 2007, 253, 4010-4015.	6.1	3
149	One pot synthesis of bi-linker stabilised CdSe quantum dots. Journal of Physics: Conference Series, 2010, 245, 012067.	0.4	3
150	STEM electron tomography in the Scanning Electron Microscope. Journal of Physics: Conference Series, 2015, 644, 012012.	0.4	3
151	Synthesis of High-Density Graphene Foams Using Nanoparticle Templates. Carbon Nanostructures, 2017, , 185-196.	0.1	3
152	Electrically conductive gamma-alumina/amorphous carbon nano-composite foams. Journal of Alloys and Compounds, 2017, 694, 921-928.	5.5	3
153	3D to 2D reorganization of silver–thiol nanostructures, triggered by solvent vapor annealing. Nanoscale, 2018, 10, 23018-23026.	5.6	3
154	Nanostructuring Iridium Complexes into Crystalline Phosphorescent Nanoparticles: Structural Characterization, Photophysics, and Biological Applications. ACS Applied Bio Materials, 2019, 2, 4594-4603.	4.6	3
155	Allâ€Electrochemical Nanofabrication of Stacked Ternary Metal Sulfide/Graphene Electrodes for Highâ€Performance Alkaline Batteries. Small, 2022, 18, e2106403.	10.0	3
156	A Tight Binding study of defects in nanocrystalline SnO2. Computational Materials Science, 2005, 33, 346-350.	3.0	2
157	Solution of the time-dependent, multi-particle Schrödinger equation using Monte Carlo and numerical integration. Computational Materials Science, 2006, 38, 231-239.	3.0	2
158	Enhanced reduction in threading dislocation density in Ge grown on porous silicon during annealing due to porous buffer reconstruction. Physica Status Solidi (A) Applications and Materials Science, 2016, 213, 96-101.	1.8	2
159	Protein-Based Nanostructures and Their Self-assembly with Graphene Oxide. Carbon Nanostructures, 2017, , 197-210.	0.1	2
160	Silicon Meet Graphene for a New Family of Near-Infrared Resonant Cavity Enhanced Photodetectors. , 2020, , .		2
161	Transmission Electron Microscopy Study of Graphene Solutions. Carbon Nanostructures, 2012, , 157-163.	0.1	2
162	About the role of boundary conditions on compositional imaging with a scanning electron microscope. Journal of Microscopy, 2005, 218, 180-184.	1.8	1

#	Article	IF	CITATIONS
163	The scattering approach: Application to the conductance of silicon nanograins. Physica E: Low-Dimensional Systems and Nanostructures, 2006, 31, 204-208.	2.7	1
164	Si Ultra Shallow Junctions Dopant Profiling with ADF-STEM. Materials Research Society Symposia Proceedings, 2007, 1026, 1.	0.1	1
165	The electronic configuration and the conductance of silicon nanograins: An application of the scattering approach. Computational Materials Science, 2007, 38, 830-837.	3.0	1
166	SnO2 nanograins Au-doped: A quantum mechanical evaluation of CO adsorption. Physica E: Low-Dimensional Systems and Nanostructures, 2007, 37, 287-291.	2.7	1
167	Folds and Buckles at the Nanoscale: Experimental and Theoretical Investigation of the Bending Properties of Graphene Membranes. Topics in Current Chemistry, 2013, 348, 205-236.	4.0	1
168	A new apparatus for electron tomography in the scanning electron microscope. AIP Conference Proceedings, 2015, , .	0.4	1
169	Graphene-lipids interaction: Towards the fabrication of a novel sensor for biomedical uses. , 2015, , .		1
170	Graphene: A Supramolecular Strategy to Leverage the Liquid-Phase Exfoliation of Graphene in the Presence of Surfactants: Unraveling the Role of the Length of Fatty Acids (Small 14/2015). Small, 2015, 11, 1736-1736.	10.0	1
171	Investigation of the time-dependent failure of InGaN-based LEDs submitted to reverse-bias stress. Proceedings of SPIE, 2017, , .	0.8	1
172	Room temperature ferromagnetism in low dose ion implanted counter-doped Ge:Mn, As. Physica B: Condensed Matter, 2017, 523, 1-5.	2.7	1
173	Three-dimensional microporous graphene decorated with lithium. Nanotechnology, 2018, 29, 405707.	2.6	1
174	Grapheneâ€Based Materials: Bioinspired Design of Grapheneâ€Based Materials (Adv. Funct. Mater. 51/2020). Advanced Functional Materials, 2020, 30, 2070336.	14.9	1
175	Role of cobalt precursors in the synthesis of <scp> Co ₃ O ₄ </scp> hierarchical nanostructures toward the development of cobaltâ€based functional electrocatalysts for bifunctional water splitting in alkaline and acidic media. Journal of the Chinese Chemical Society, 0, , .	1.4	1
176	THE EFFECTS OF METALLIC CONTACTS ON SILICON NANOSTRUCTURES STUDIED QUANTUM MECHANICALLY. International Journal of Modern Physics C, 2004, 15, 447-458.	1.7	0
177	Evolution of nanometric structures under irradiation studied by a time-dependent Hartree–Fock method. Computational Materials Science, 2005, 33, 351-355.	3.0	0
178	SEM tomography for the investigation of hybrid structures. Journal of Physics: Conference Series, 2017, 902, 012031.	0.4	0
179	Structure and sieving mechanism of high selective graphene-based membranes. AIP Conference Proceedings, 2018, , .	0.4	0
180	AC parallel local oxidation of silicon. Nanoscale Advances, 2019, 1, 3887-3891.	4.6	0

#	Article	IF	CITATIONS
181	Dopant profile investigation in low-energy scanning transmission electron microscopy. , 2018, , 545-548.		0
182	Superior Doped Olivine Cathodes for Fast Charge/Discharge Lithium Batteries. ECS Meeting Abstracts, 2019, , .	0.0	0
183	On the Spatial Resolution and Nanoscale Features Visibility in Scanning Electron Microscopy and Low-Energy Scanning Transmission Electron Microscopy. , 2008, , 521-522.		0
184	Size Effect in Gold Nanoparticles Investigated by Electron Holography and STEM. , 2008, , 247-248.		0
185	Influence of the Fabrication Conditions on the Physical Properties and Water Treatment Efficiency of Cellulose Acetate Porous Membranes. SSRN Electronic Journal, 0, , .	0.4	0