

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6478366/publications.pdf Version: 2024-02-01

Υπλι Χυ

#	Article	IF	CITATIONS
1	Flexible Graphene Films via the Filtration of Water-Soluble Noncovalent Functionalized Graphene Sheets. Journal of the American Chemical Society, 2008, 130, 5856-5857.	13.7	3,085
2	Self-Assembled Graphene Hydrogel <i>via</i> a One-Step Hydrothermal Process. ACS Nano, 2010, 4, 4324-4330.	14.6	2,999
3	Supercapacitors Based on Flexible Graphene/Polyaniline Nanofiber Composite Films. ACS Nano, 2010, 4, 1963-1970.	14.6	2,100
4	Holey graphene frameworks for highly efficient capacitive energy storage. Nature Communications, 2014, 5, 4554.	12.8	1,161
5	Flexible Solid-State Supercapacitors Based on Three-Dimensional Graphene Hydrogel Films. ACS Nano, 2013, 7, 4042-4049.	14.6	1,037
6	Transparent graphene/PEDOT–PSS composite films as counter electrodes of dye-sensitized solar cells. Electrochemistry Communications, 2008, 10, 1555-1558.	4.7	802
7	Three-Dimensional Self-Assembly of Graphene Oxide and DNA into Multifunctional Hydrogels. ACS Nano, 2010, 4, 7358-7362.	14.6	788
8	Strong and ductile poly(vinyl alcohol)/graphene oxide composite films with a layered structure. Carbon, 2009, 47, 3538-3543.	10.3	671
9	Functionalized Graphene Hydrogelâ€Based Highâ€Performance Supercapacitors. Advanced Materials, 2013, 25, 5779-5784.	21.0	577
10	Non-covalent functionalization of graphene sheets by sulfonated polyaniline. Chemical Communications, 2009, , 1667.	4.1	569
11	Hierarchical 3D electrodes for electrochemical energy storage. Nature Reviews Materials, 2019, 4, 45-60.	48.7	554
12	Chemically Converted Graphene Induced Molecular Flattening of 5,10,15,20-Tetrakis(1-methyl-4-pyridinio)porphyrin and Its Application for Optical Detection of Cadmium(II) Ions. Journal of the American Chemical Society, 2009, 131, 13490-13497.	13.7	497
13	Self-Assembled Three-Dimensional Graphene Macrostructures: Synthesis and Applications in Supercapacitors. Accounts of Chemical Research, 2015, 48, 1666-1675.	15.6	441
14	Solution Processable Holey Graphene Oxide and Its Derived Macrostructures for High-Performance Supercapacitors. Nano Letters, 2015, 15, 4605-4610.	9.1	426
15	Porous Fe ₂ O ₃ Nanoframeworks Encapsulated within Three-Dimensional Graphene as High-Performance Flexible Anode for Lithium-Ion Battery. ACS Nano, 2017, 11, 5140-5147.	14.6	421
16	Preparation of Gold Nanoparticle/Graphene Composites with Controlled Weight Contents and Their Application in Biosensors. Journal of Physical Chemistry C, 2010, 114, 1822-1826.	3.1	389
17	Functional Three-Dimensional Graphene/Polymer Composites. ACS Nano, 2016, 10, 7231-7247.	14.6	296
18	Chemically converted graphene as substrate for immobilizing and enhancing the activity of a polymeric catalyst. Chemical Communications, 2010, 46, 4740.	4.1	287

#	Article	IF	CITATIONS
19	3D MXene Architectures for Efficient Energy Storage and Conversion. Advanced Functional Materials, 2020, 30, 2000842.	14.9	276
20	Assembly of chemically modified graphene: methods and applications. Journal of Materials Chemistry, 2011, 21, 3311-3323.	6.7	250
21	Polyaniline electrochromic devices with transparent graphene electrodes. Electrochimica Acta, 2009, 55, 491-497.	5.2	244
22	A Facile Strategy to Pt ₃ Ni Nanocrystals with Highly Porous Features as an Enhanced Oxygen Reduction Reaction Catalyst. Advanced Materials, 2013, 25, 2974-2979.	21.0	232
23	One-step strategy to graphene/Ni(OH)2 composite hydrogels as advanced three-dimensional supercapacitor electrode materials. Nano Research, 2013, 6, 65-76.	10.4	202
24	Highly conductive chemically converted graphene prepared from mildly oxidized graphene oxide. Journal of Materials Chemistry, 2011, 21, 7376.	6.7	187
25	An Ultrafast Conducting Polymer@MXene Positive Electrode with High Volumetric Capacitance for Advanced Asymmetric Supercapacitors. Small, 2020, 16, e1906851.	10.0	186
26	New Layered Triazine Framework/Exfoliated 2D Polymer with Superior Sodium‣torage Properties. Advanced Materials, 2018, 30, 1705401.	21.0	177
27	Solution Synthesis of Semiconducting Two-Dimensional Polymer via Trimerization of Carbonitrile. Journal of the American Chemical Society, 2017, 139, 11666-11669.	13.7	175
28	Integration of Graphene, Nano Sulfur, and Conducting Polymer into Compact, Flexible Lithium–Sulfur Battery Cathodes with Ultrahigh Volumetric Capacity and Superior Cycling Stability for Foldable Devices. Advanced Materials, 2017, 29, 1703324.	21.0	167
29	Three-dimensional graphene framework with ultra-high sulfur content for a robust lithium–sulfur battery. Nano Research, 2016, 9, 240-248.	10.4	165
30	Palladiumâ€Based Nanostructures with Highly Porous Features and Perpendicular Pore Channels as Enhanced Organic Catalysts. Angewandte Chemie - International Edition, 2013, 52, 2520-2524.	13.8	147
31	Graphene anchored on Cu foam as a lithiophilic 3D current collector for a stable and dendrite-free lithium metal anode. Journal of Materials Chemistry A, 2018, 6, 9899-9905.	10.3	137
32	Few‣ayer Silicene Nanosheets with Superior Lithiumâ€Storage Properties. Advanced Materials, 2018, 30, e1800838.	21.0	126
33	Solvated Graphene Frameworks as Highâ€Performance Anodes for Lithiumâ€ŀon Batteries. Angewandte Chemie - International Edition, 2015, 54, 5345-5350.	13.8	124
34	Three-dimensional graphene/polyimide composite-derived flexible high-performance organic cathode for rechargeable lithium and sodium batteries. Journal of Materials Chemistry A, 2017, 5, 2710-2716.	10.3	119
35	All-pseudocapacitive asymmetric MXene-carbon-conducting polymer supercapacitors. Nano Energy, 2020, 75, 104971.	16.0	119
36	Rational design of three-dimensional graphene encapsulated core–shell FeS@carbon nanocomposite as a flexible high-performance anode for sodium-ion batteries. Journal of Materials Chemistry A, 2018, 6, 6414-6421.	10.3	113

#	Article	IF	CITATIONS
37	Integration of ultrathin graphene/polyaniline composite nanosheets with a robust 3D graphene framework for highly flexible all-solid-state supercapacitors with superior energy density and exceptional cycling stability. Journal of Materials Chemistry A, 2017, 5, 5466-5474.	10.3	111
38	Sub-5 nm Ultrasmall Metal–Organic Framework Nanocrystals for Highly Efficient Electrochemical Energy Storage. ACS Nano, 2018, 12, 3947-3953.	14.6	110
39	Ultrathin Crystalline Covalentâ€Triazineâ€Framework Nanosheets with Electron Donor Groups for Synergistically Enhanced Photocatalytic Water Splitting. Angewandte Chemie - International Edition, 2021, 60, 25381-25390.	13.8	104
40	Rational synthesis of carbon shell coated polyaniline/MoS2 monolayer composites for high-performance supercapacitors. Nano Research, 2016, 9, 951-962.	10.4	101
41	Morphology Effect of Vertical Graphene on the High Performance of Supercapacitor Electrode. ACS Applied Materials & Interfaces, 2016, 8, 7363-7369.	8.0	98
42	Microwave-assisted ultrafast synthesis of adjustable bimetal phosphide/graphene heterostructures from MOFs for efficient electrochemical water splitting. Journal of Materials Chemistry A, 2019, 7, 14526-14535.	10.3	88
43	Interface Engineering between the Metal–Organic Framework Nanocrystal and Graphene toward Ultrahigh Potassium-Ion Storage Performance. ACS Nano, 2020, 14, 10210-10218.	14.6	88
44	Holey graphene-based nanocomposites for efficient electrochemical energy storage. Nano Energy, 2020, 73, 104762.	16.0	87
45	Highly conductive and flexible mesoporous graphitic films prepared by graphitizing the composites of graphene oxide and nanodiamond. Journal of Materials Chemistry, 2011, 21, 7154.	6.7	85
46	A Catalytic Microwave Process for Superfast Preparation of Highâ€Quality Reduced Graphene Oxide. Angewandte Chemie - International Edition, 2017, 56, 15677-15682.	13.8	82
47	Dispersion–Assembly Approach to Synthesize Three-Dimensional Graphene/Polymer Composite Aerogel as a Powerful Organic Cathode for Rechargeable Li and Na Batteries. ACS Applied Materials & Interfaces, 2017, 9, 15549-15556.	8.0	79
48	Recent progress in metal–organic framework/graphene-derived materials for energy storage and conversion: design, preparation, and application. Chemical Science, 2021, 12, 5737-5766.	7.4	79
49	Recent progress in two-dimensional polymers for energy storage and conversion: design, synthesis, and applications. Journal of Materials Chemistry A, 2018, 6, 21676-21695.	10.3	78
50	Graphene/polyaniline@carbon cloth composite as a high-performance flexible supercapacitor electrode prepared by a one-step electrochemical co-deposition method. RSC Advances, 2017, 7, 7688-7693.	3.6	76
51	A Universal Strategy toward Ultrasmall Hollow Nanostructures with Remarkable Electrochemical Performance. Angewandte Chemie - International Edition, 2020, 59, 8247-8254.	13.8	72
52	Solution Processable Colloidal Nanoplates as Building Blocks for High-Performance Electronic Thin Films on Flexible Substrates. Nano Letters, 2014, 14, 6547-6553.	9.1	69
53	Highâ€Voltageâ€Tolerant Covalent Organic Framework Electrolyte with Holistically Oriented Channels for Solidâ€State Lithium Metal Batteries with Nickelâ€Rich Cathodes. Angewandte Chemie - International Edition, 2021, 60, 24915-24923.	13.8	67
54	Cosolvent Approach for Solution-Processable Electronic Thin Films. ACS Nano, 2015, 9, 4398-4405.	14.6	63

#	Article	IF	CITATIONS
55	A facile synthesis of three dimensional graphene sponge composited with sulfur nanoparticles for flexible Li–S cathodes. Physical Chemistry Chemical Physics, 2016, 18, 22146-22153.	2.8	63
56	Double-Holey-Heterostructure Frameworks Enable Fast, Stable, and Simultaneous Ultrahigh Gravimetric, Areal, and Volumetric Lithium Storage. ACS Nano, 2018, 12, 12879-12887.	14.6	61
57	Monodisperse Cu@PtCu nanocrystals and their conversion into hollow-PtCu nanostructures for methanol oxidation. Journal of Materials Chemistry A, 2013, 1, 14449.	10.3	58
58	Rapid, Ordered Polymerization of Crystalline Semiconducting Covalent Triazine Frameworks. Angewandte Chemie - International Edition, 2022, 61, e202113926.	13.8	54
59	Ultrafine FeS ₂ nanocrystals/porous nitrogen-doped carbon hybrid nanospheres encapsulated in three-dimensional graphene for simultaneous efficient lithium and sodium ion storage. Journal of Materials Chemistry A, 2019, 7, 26342-26350.	10.3	53
60	Microwave-assisted CVD-like synthesis of dispersed monolayer/few-layer N-doped graphene encapsulated metal nanocrystals for efficient electrocatalytic oxygen evolution. Chemical Science, 2018, 9, 7009-7016.	7.4	49
61	A three-dimensional graphene framework-enabled high-performance stretchable asymmetric supercapacitor. Journal of Materials Chemistry A, 2018, 6, 1802-1808.	10.3	48
62	3D Graphene Composites for Efficient Electrochemical Energy Storage. Advanced Materials Interfaces, 2018, 5, 1800468.	3.7	48
63	Semiconducting Crystalline Two-Dimensional Polyimide Nanosheets with Superior Sodium Storage Properties. ACS Nano, 2019, 13, 2473-2480.	14.6	46
64	Graphene-hemin hybrid material as effective catalyst for selective oxidation of primary C-H bond in toluene. Scientific Reports, 2013, 3, .	3.3	45
65	Synthesis of CaCO3/graphene composite crystals for ultra-strong structural materials. RSC Advances, 2012, 2, 2154.	3.6	40
66	2D Polymer Nanosheets for Membrane Separation. Advanced Science, 2022, 9, e2103814.	11.2	39
67	A versatile strategy to the selective synthesis of Cu nanocrystals and the in situ conversion to CuRu nanotubes. Nanoscale, 2013, 5, 6284.	5.6	36
68	Reduced graphene oxide/silicon nanowire heterostructures with enhanced photoactivity and superior photoelectrochemical stability. Nano Research, 2015, 8, 2850-2858.	10.4	34
69	Ultrathin Nitrogenâ€Doped Carbon Layer Uniformly Supported on Graphene Frameworks as Ultrahighâ€Capacity Anode for Lithium″on Full Battery. Small, 2018, 14, e1703969.	10.0	34
70	Reversible 3D self-assembly of graphene oxide and stimuli-responsive polymers for high-performance graphene-based supercapacitors. Journal of Materials Chemistry A, 2017, 5, 19098-19106.	10.3	33
71	Three-dimensional graphene membrane cathode for high energy density rechargeable lithium-air batteries in ambient conditions. Nano Research, 2017, 10, 472-482.	10.4	32
72	Amorphous and Crystalline 2D Polymeric Carbon Nitride Nanosheets for Photocatalytic Hydrogen/Oxygen Evolution and Hydrogen Peroxide Production. Chemistry - an Asian Journal, 2020, 15, 2329-2340.	3.3	32

#	Article	IF	CITATIONS
73	Fe ₇ Se ₈ @C core–shell nanoparticles encapsulated within a three-dimensional graphene composite as a high-performance flexible anode for lithium-ion batteries. New Journal of Chemistry, 2017, 41, 5121-5124.	2.8	31
74	Inâ€Situ Growth and Wrapping of Aminoanthraquinone Nanowires in 3 D Graphene Framework as Foldable Organic Cathode for Lithiumâ€lon Batteries. ChemSusChem, 2017, 10, 3419-3426.	6.8	30
75	Graphene Oxide-Supported Organo-Montmorillonite Composites for the Removal of Pb(II), Cd(II), and As(V) Contaminants from Water. ACS Applied Nano Materials, 2020, 3, 806-813.	5.0	30
76	Incorporating conjugated carbonyl compounds into carbon nanomaterials as electrode materials for electrochemical energy storage. Physical Chemistry Chemical Physics, 2016, 18, 31361-31377.	2.8	29
77	A General Strategy for Kilogramâ€6cale Preparation of Highly Crystalâ€line Covalent Triazine Frameworks. Angewandte Chemie - International Edition, 2022, 61, e202203327.	13.8	29
78	Two-dimensional polymer nanosheets for efficient energy storage and conversion. Nano Research, 2021, 14, 2023-2036.	10.4	28
79	Supramolecular Modulation of Molecular Conformation of Metal Porphyrins toward Remarkably Enhanced Multipurpose Electrocatalysis and Ultrahighâ€Performance Zinc–Air Batteries. Advanced Energy Materials, 2021, 11, 2102062.	19.5	27
80	A Selfâ€Growth Strategy for Simultaneous Modulation of Interlayer Distance and Lyophilicity of Graphene Layers toward Ultrahigh Potassium Storage Performance. Advanced Functional Materials, 2021, 31, 2105145.	14.9	26
81	Covalent Triazine Framework Nanosheets for Efficient Energy Storage and Conversion. Chemical Research in Chinese Universities, 2020, 36, 640-647.	2.6	25
82	Tailoring the interaction of covalent organic framework with the polyether matrix toward highâ€performance solidâ€state lithium metal batteries. , 2022, 4, 506-516.		25
83	A Universal Strategy toward Ultrasmall Hollow Nanostructures with Remarkable Electrochemical Performance. Angewandte Chemie, 2020, 132, 8324-8331.	2.0	22
84	One Versatile Route to Threeâ€Ðimensional Graphene Wrapped Metal Cyanide Aerogels for Enhanced Sodium Ion Storage. Chemistry - A European Journal, 2017, 23, 8358-8363.	3.3	20
85	Emerging Two-Dimensional Covalent and Coordination Polymers for Stable Lithium Metal Batteries: From Liquid to Solid. ACS Nano, 2021, 15, 19026-19053.	14.6	20
86	A Catalytic Microwave Process for Superfast Preparation of Highâ€Quality Reduced Graphene Oxide. Angewandte Chemie, 2017, 129, 15883-15888.	2.0	18
87	Nanoconfinement Synthesis of Ultrasmall Bismuth Oxyhalide Nanocrystals with Sizeâ€Induced Fully Reversible Potassiumâ€Ion Storage and Ultrahigh Volumetric Capacity. Advanced Functional Materials, 2022, 32, .	14.9	15
88	Unexpected Effect of Electrode Architecture on High-Performance Lithium–Sulfur Batteries. ACS Applied Materials & Interfaces, 2018, 10, 33269-33275.	8.0	9
89	Ultrathin Crystalline Covalentâ€Triazineâ€Framework Nanosheets with Electron Donor Groups for Synergistically Enhanced Photocatalytic Water Splitting. Angewandte Chemie, 2021, 133, 25585-25594. 	2.0	8
90	Monomer-dependent synthesis of secondary amine-linked triazine-based two-dimensional polymers nanosheets. Science China Chemistry, 2020, 63, 966-972.	8.2	7

2.0

0

#	Article	IF	CITATIONS
91	Efficient Fractionation of Graphene Oxide Based on Reversible Adsorption of Polymer and Size-Dependent Sodium Ion Storage. ACS Applied Materials & Interfaces, 2019, 11, 2218-2224.	8.0	6
92	Rapid, Ordered Polymerization of Crystalline Semiconducting Covalent Triazine Frameworks. Angewandte Chemie, 2022, 134, e202113926.	2.0	5
93	Graphene Hydrogels: Functionalized Graphene Hydrogel-Based High-Performance Supercapacitors (Adv. Mater. 40/2013). Advanced Materials, 2013, 25, 5828-5828.	21.0	3
94	Highâ€Voltageâ€Tolerant Covalent Organic Framework Electrolyte with Holistically Oriented Channels for Solidâ€State Lithium Metal Batteries with Nickelâ€Rich Cathodes. Angewandte Chemie, 0, , .	2.0	3
95	A General Strategy for Kilogramâ€Scale Preparation of Highly Crystalline Covalent Triazine Frameworks. Angewandte Chemie, 2022, 134, .	2.0	1
96	Supramolecular Modulation of Molecular Conformation of Metal Porphyrins toward Remarkably Enhanced Multipurpose Electrocatalysis and Ultrahighâ€Performance Zinc–Air Batteries (Adv. Energy) Tj ETQq() (1.9.5 gBT	/Qiverlock 10
97	Rücktitelbild: A Catalytic Microwave Process for Superfast Preparation of Highâ€Quality Reduced Graphene Oxide (Angew. Chem. 49/2017). Angewandte Chemie, 2017, 129, 15978-15978.	2.0	0
98	Frontispiece: Highâ€Voltageâ€Tolerant Covalent Organic Framework Electrolyte with Holistically Oriented Channels for Solidâ€State Lithium Metal Batteries with Nickelâ€Rich Cathodes. Angewandte Chemie - International Edition, 2021, 60, .	13.8	0
99	Frontispiz: Highâ€Voltageâ€Tolerant Covalent Organic Framework Electrolyte with Holistically Oriented Channels for Solidâ€State Lithium Metal Batteries with Nickelâ€Rich Cathodes. Angewandte Chemie, 2021, 133, .	2.0	0

100 RÃ1¼cktitelbild: Rapid, Ordered Polymerization of Crystalline Semiconducting Covalent Triazine Frameworks (Angew. Chem. 4/2022). Angewandte Chemie, 2022, 134, .