Sachin Kumar

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6475700/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Immune variants of SARS-CoV-2 could be a significant challenge for developing a pan genotype-specific vaccine. Human Vaccines and Immunotherapeutics, 2024, 17, 5145-5147.	3.3	0
2	lsolation of genotype VII avian orthoavulavirus serotype 1 from barn owl from Northeast India. Avian Pathology, 2022, 51, 45-50.	2.0	7
3	Reverse Genetics and Its Usage in the Development of Vaccine Against Poultry Diseases. Methods in Molecular Biology, 2022, 2411, 77-92.	0.9	1
4	Insight towards the effect of the multi basic cleavage site of SARS-CoV-2 spike protein on cellular proteases. Virus Research, 2022, 318, 198845.	2.2	5
5	Bacterial protein azurin and derived peptides as potential anti-SARS-CoV-2 agents: insights from molecular docking and molecular dynamics simulations. Journal of Biomolecular Structure and Dynamics, 2021, 39, 5706-5721.	3.5	18
6	Lithium chloride functions as Newcastle disease virus-induced ER-stress modulator and confers anti-viral effect. Virus Research, 2021, 292, 198223.	2.2	11
7	Inhibition of immunosuppressive indoleamine 2,3-dioxygenase by targeting the heme and apo-form. Chemical Communications, 2021, 57, 395-398.	4.1	3
8	Characterization of nucleocapsid and matrix proteins of Newcastle disease virus in yeast. 3 Biotech, 2021, 11, 65.	2.2	1
9	Multifunctional N-Doped Carbon Dots for Bimodal Detection of Bilirubin and Vitamin B ₁₂ , Living Cell Imaging, and Fluorescent Ink. ACS Applied Bio Materials, 2021, 4, 5201-5211.	4.6	40
10	A systematic review and meta-analysis on the prevalence of infectious diseases of Duck: A world perspective. Saudi Journal of Biological Sciences, 2021, 28, 5131-5144.	3.8	7
11	Hit Multiple Targets with One Arrow: Pb ²⁺ and ClO [–] Detection by Edge Functionalized Graphene Quantum Dots and Their Applications in Living Cells. ACS Applied Bio Materials, 2021, 4, 7605-7614.	4.6	12
12	Vaccines efficacy to SARS-CoV-2 variants require holistic knowledge of viral immunology and protein biochemistry. Human Vaccines and Immunotherapeutics, 2021, 17, 4128-4130.	3.3	1
13	Modulation of immune response in Ebola virus disease. Current Opinion in Pharmacology, 2021, 60, 158-167.	3.5	5
14	Sulfonium-based liposome-encapsulated antibiotics deliver a synergistic antibacterial activity. RSC Medicinal Chemistry, 2021, 12, 1005-1015.	3.9	12
15	Resiquimod inhibits Newcastle disease virus replication by modulating host cytokines: An understanding towards its possible therapeutics. Cytokine, 2020, 125, 154811.	3.2	5
16	Sunlight-Mediated Thiol–Ene/Yne Click Reaction: Synthesis and DNA Transfection Efficiency of New Cationic Lipids. ACS Omega, 2020, 5, 735-750.	3.5	8
17	Extraction, characterization of xylan from Azadirachta indica (neem) sawdust and production of antiproliferative xylooligosaccharides. International Journal of Biological Macromolecules, 2020, 163, 1897-1907.	7.5	26
18	Role of cholesterol in anatid herpesvirus 1 infections in vitro. Virus Research, 2020, 290, 198174.	2.2	3

#	Article	IF	CITATIONS
19	Computational guided drug repurposing for targeting 2′-O-ribose methyltransferase of SARS-CoV-2. Life Sciences, 2020, 259, 118169.	4.3	22
20	Amyloid Targeting "Artificial Chaperone―Impairs Oligomer Mediated Neuronal Damage and Mitochondrial Dysfunction Associated with Alzheimer's Disease. ACS Chemical Neuroscience, 2020, 11, 3277-3287.	3.5	14
21	Therapeutic potential of Nitazoxanide against Newcastle disease virus: A possible modulation of host cytokines. Cytokine, 2020, 131, 155115.	3.2	11
22	Understanding the B and T cell epitopes of spike protein of severe acute respiratory syndrome coronavirus-2: A computational way to predict the immunogens. Infection, Genetics and Evolution, 2020, 84, 104382.	2.3	36
23	Structure analysis of the nucleoprotein of Newcastle disease virus: An insight towards its multimeric form in solution. International Journal of Biological Macromolecules, 2020, 151, 402-411.	7.5	7
24	Modulating Al̂² Fibrillogenesis with â€~Trojan' peptides. Neuropeptides, 2020, 81, 102030.	2.2	6
25	Evaluation of Japanese encephalitis virus E and NS1 proteins immunogenicity using a recombinant Newcastle disease virus in mice. Vaccine, 2020, 38, 1860-1868.	3.8	10
26	Chloride Ion Transport by PITENINs across the Phospholipid Bilayers of Vesicles and Cells. ACS Applied Bio Materials, 2020, 3, 935-944.	4.6	13
27	Infectious laryngotracheitis: Etiology, epidemiology, pathobiology, and advances in diagnosis and control – a comprehensive review. Veterinary Quarterly, 2020, 40, 140-161.	6.7	24
28	Modulation of tau protein aggregation using †̃Trojan' sequences. Biochimica Et Biophysica Acta - General Subjects, 2020, 1864, 129569.	2.4	10
29	Exploring rotavirus proteome to identify potential B- and T-cell epitope using computational immunoinformatics. Heliyon, 2020, 6, e05760.	3.2	11
30	Organelle dynamics and viral infections: at cross roads. Microbes and Infection, 2019, 21, 20-32.	1.9	50
31	Newcastle disease virus mediated apoptosis and migration inhibition of human oral cancer cells: A probable role of β-catenin and matrix metalloproteinase-7. Scientific Reports, 2019, 9, 10882.	3.3	13
32	Evaluation of surface glycoproteins of classical swine fever virus as immunogens and reagents for serological diagnosis of infections in pigs: a recombinant Newcastle disease virus approach. Archives of Virology, 2019, 164, 3007-3017.	2.1	10
33	Template-Mediated Detoxification of Low-Molecular-Weight Amyloid Oligomers and Regulation of Their Nucleation Pathway. ACS Applied Bio Materials, 2019, 2, 5306-5312.	4.6	8
34	Analysis of codon usage pattern in the viral proteins of chicken anaemia virus and its possible biological relevance. Infection, Genetics and Evolution, 2019, 69, 93-106.	2.3	6
35	Glycoprotein D peptide-based diagnostic approach for the detection of avian infectious laryngotracheitis antibodies. Avian Pathology, 2019, 48, 602-609.	2.0	8
36	Tuning the solubility of ionophores: glutathione-mediated transport of chloride ions across hydrophobic membranes. Chemical Communications, 2019, 55, 8482-8485.	4.1	32

#	Article	IF	CITATIONS
37	Limpid hydrogels from β-turn motif-connected tandem repeats of Aβ16–22. Soft Matter, 2019, 15, 4827-4835.	2.7	8
38	pH-Regulated anion transport activities of bis(iminourea) derivatives across the cell and vesicle membrane. Organic and Biomolecular Chemistry, 2019, 17, 5779-5788.	2.8	27
39	Chicken viperin inhibits Newcastle disease virus infection in vitro: A possible interaction with the viral matrix protein. Cytokine, 2019, 120, 28-40.	3.2	20
40	Nanoparticle Assisted Regulation of Nucleation Pathway of Amyloid Tetramer and Inhibition of Their Fibrillation Kinetics. ACS Applied Bio Materials, 2019, 2, 2137-2142.	4.6	16
41	4,5-Disubstituted 1,2,3-triazoles: Effective Inhibition of Indoleamine 2,3-Dioxygenase 1 Enzyme Regulates T cell Activity and Mitigates Tumor Growth. Scientific Reports, 2019, 9, 18455.	3.3	24
42	Hydrogel Formation by an Aromatic Analogue of a β-Amyloid Fragment, Aβ _{16–22} : A Scaffold for 3D Cell Culture. ACS Omega, 2019, 4, 620-627.	3.5	8
43	Emergence of a genotype I variant of avian infectious bronchitis virus from Northern part of India. Acta Tropica, 2018, 183, 57-60.	2.0	5
44	Analysis of codon usage pattern of infectious laryngotracheitis virus immunogenic glycoproteins and its biological implications. Infection, Genetics and Evolution, 2018, 62, 53-59.	2.3	3
45	Production of recombinant Erns protein of classical swine fever virus and assessment of its enzymatic activity: A recombinant Newcastle disease virus-based approach. Process Biochemistry, 2018, 66, 113-119.	3.7	4
46	Diphenylethylenediamine-Based Potent Anionophores: Transmembrane Chloride Ion Transport and Apoptosis Inducing Activities. ACS Applied Materials & Interfaces, 2018, 10, 33803-33813.	8.0	29
47	Sexual transmission of Zika virus: more to explore. The Lancet Global Health, 2018, 6, e618.	6.3	2
48	Reduction in antimicrobial resistance by the way of extensive vaccination. Human Vaccines and Immunotherapeutics, 2018, 14, 2955-2956.	3.3	2
49	The emergence of porcine circovirus 2 infections in the Northeastern part of India: A retrospective study from 2011 to 2017. Transboundary and Emerging Diseases, 2018, 65, 1959-1967.	3.0	13
50	Evidence of independent evolution of genotype XIII Newcastle disease viruses in India. Archives of Virology, 2017, 162, 997-1007.	2.1	18
51	Characterization of duck plague virus stability at extreme conditions of temperature, pH and salt concentration. Biologicals, 2017, 45, 102-105.	1.4	7
52	Molecular characterization of classical swine fever virus isolates from India during 2012–14. Acta Tropica, 2017, 170, 184-189.	2.0	8
53	Synonymous codon usage of genes in polymerase complex of Newcastle disease virus. Journal of Basic Microbiology, 2017, 57, 481-503.	3.3	5
54	Emerging variant of genotype XIII Newcastle disease virus from Northeast India. Acta Tropica, 2017, 172, 64-69.	2.0	15

#	Article	IF	CITATIONS
55	Molecular characterization of chicken anemia virus outbreaks in Nagpur province, India from 2012 to 2015. Microbial Pathogenesis, 2017, 102, 113-119.	2.9	12
56	Emergence of a deviating genotype VI pigeon paramyxovirus type-1 isolated from India. Archives of Virology, 2017, 162, 2169-2174.	2.1	11
57	Incidence of elephant endotheliotropic herpesvirus in Asian elephants in India. Veterinary Microbiology, 2017, 208, 159-163.	1.9	10
58	Enhanced cytopathic effect of Japanese encephalitis virus strain SA14-14-2: Probable association of mutation in amino acid of its envelope protein. Microbial Pathogenesis, 2017, 111, 187-192.	2.9	6
59	Development of single dilution immunoassay to detect E2 protein specific classical swine fever virus antibody. Veterinary Immunology and Immunopathology, 2016, 172, 50-54.	1.2	14
60	Synonymous codon usage pattern in glycoprotein gene of rabies virus. Gene, 2016, 584, 1-6.	2.2	76
61	Molecular characterization of genotype XIIIb Newcastle disease virus from central India during 2006–2012: Evidence of its panzootic potential. Microbial Pathogenesis, 2016, 99, 83-86.	2.9	16
62	Avian infectious laryngotracheitis: A neglected poultry health threat in India. Vaccine, 2016, 34, 4276-4277.	3.8	7
63	Isolation of novel variants of infectious bursal disease virus from different outbreaks in Northeast India. Microbial Pathogenesis, 2016, 93, 131-136.	2.9	16
64	Newcastle disease virus: A constant threat to the poultry industry in India. Vaccine, 2016, 34, 597-598.	3.8	9
65	Molecular characterization of Newcastle disease virus strains isolated from different outbreaks in Northeast India during 2014–15. Microbial Pathogenesis, 2016, 91, 85-91.	2.9	16
66	Complete Genome Sequence of a Newcastle Disease Virus Isolate from an Outbreak in Central India. Genome Announcements, 2015, 3, .	0.8	11
67	DNA vaccine against infectious bursal disease virus: Still more to explore. Veterinary Microbiology, 2015, 175, 389-390.	1.9	5
68	Molecular characterization of E2 glycoprotein of classical swine fever virus: adaptation and propagation in porcine kidney cells. In Vitro Cellular and Developmental Biology - Animal, 2015, 51, 441-446.	1.5	2
69	Analysis of synonymous codon usage in the VP2 protein gene of infectious bursal disease virus. Archives of Virology, 2015, 160, 2359-2366.	2.1	7
70	Newcastle disease virus outbreaks in India: Time to revisit the vaccine type and strategies. Vaccine, 2015, 33, 3268-3269.	3.8	14
71	Recombinant phosphoprotein based single serum dilution ELISA for rapid serological detection of Newcastle disease virus. Journal of Virological Methods, 2015, 225, 64-69.	2.1	9
72	Evaluation of infectious bursal disease virus stability at different conditions of temperature and pH. Biologicals, 2015, 43, 515-518.	1.4	5

#	Article	IF	CITATIONS
73	Analysis of synonymous codon usage in spike protein gene of infectious bronchitis virus. Canadian Journal of Microbiology, 2015, 61, 983-989.	1.7	6
74	Species Based Synonymous Codon Usage in Fusion Protein Gene of Newcastle Disease Virus. PLoS ONE, 2014, 9, e114754.	2.5	12
75	Complete Genome Sequence of a Newcastle Disease Virus Isolate from an Outbreak in Northern India. Genome Announcements, 2014, 2, .	0.8	19
76	Newcastle disease virus: Current status and our understanding. Virus Research, 2014, 184, 71-81.	2.2	263
77	Spectrum of Newcastle disease virus stability in gradients of temperature and pH. Biologicals, 2014, 42, 351-354.	1.4	10
78	A recombinant Newcastle disease virus (NDV) expressing infectious laryngotracheitis virus (ILTV) surface glycoprotein D protects against highly virulent ILTV and NDV challenges in chickens. Vaccine, 2014, 32, 3555-3563.	3.8	49
79	Effects of Naturally Occurring Six- and Twelve-Nucleotide Inserts on Newcastle Disease Virus Replication and Pathogenesis. PLoS ONE, 2014, 9, e103951.	2.5	7
80	Coordinate Deletion of N-Glycans from the Heptad Repeats of the Fusion F Protein of Newcastle Disease Virus Yields a Hyperfusogenic Virus with Increased Replication, Virulence, and Immunogenicity. Journal of Virology, 2012, 86, 2501-2511.	3.4	25
81	Sequence analysis of fusion protein gene of Newcastle disease virus isolated from outbreaks in Egypt during 2006. Virology Journal, 2011, 8, 237.	3.4	34
82	Evaluation of the Newcastle Disease Virus F and HN Proteins in Protective Immunity by Using a Recombinant Avian Paramyxovirus Type 3 Vector in Chickens. Journal of Virology, 2011, 85, 6521-6534.	3.4	73
83	A single amino acid change, Q114R, in the cleavage-site sequence of Newcastle disease virus fusion protein attenuates viral replication and pathogenicity. Journal of General Virology, 2011, 92, 2333-2338.	2.9	37
84	Complete genome sequence of highly virulent neurotropic Newcastle disease virus strain Texas GB. Virus Genes, 2010, 41, 67-72.	1.6	18
85	Experimental avian paramyxovirus serotype-3 infection in chickens and turkeys. Veterinary Research, 2010, 41, 72.	3.0	17
86	Contributions of the Avian Influenza Virus HA, NA, and M2 Surface Proteins to the Induction of Neutralizing Antibodies and Protective Immunity. Journal of Virology, 2010, 84, 2408-2420.	3.4	59
87	Complete genome sequence of avian paramyxovirus-3 strain Wisconsin: Evidence for the existence of subgroups within the serotype. Virus Research, 2010, 149, 78-85.	2.2	25
88	Role of Immunostimulatory Molecules in Poultry Vaccines. Recent Patents on Biotechnology, 2010, , .	0.8	0
89	Role of immunostimulatory molecules in poultry vaccines. Recent Patents on Biotechnology, 2010, 4, 235-41.	0.8	2
90	Immunization of Chickens with Newcastle Disease Virus Expressing H5 Hemagglutinin Protects against Highly Pathogenic H5N1 Avian Influenza Viruses. PLoS ONE, 2009, 4, e6509.	2.5	70

#	Article	IF	CITATIONS
91	Effective protection by high efficiency bicistronic DNA vaccine against infectious bursal disease virus expressing VP2 protein and chicken IL-2. Vaccine, 2009, 27, 864-869.	3.8	31
92	Complete genome sequence of avian paramyxovirus type 3 reveals an unusually long trailer region. Virus Research, 2008, 137, 189-197.	2.2	57