Eric A Davidson

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6475345/publications.pdf

Version: 2024-02-01

230 papers

44,192 citations

91 h-index 200 g-index

248 all docs

248 docs citations

times ranked

248

33504 citing authors

#	Article	IF	CITATIONS
1	Gas diffusivity and production of CO ₂ in deep soils of the eastern Amazon. Tellus, Series B: Chemical and Physical Meteorology, 2022, 47, 550.	0.8	132
2	Effects of Drainage Water Management in a Corn–Soy Rotation on Soil N2O and CH4 Fluxes. Nitrogen, 2022, 3, 128-148.	0.6	5
3	Thank You to Our 2021 Peer Reviewers. AGU Advances, 2022, 3, .	2.3	O
4	Concurrent Measurements of Soil and Ecosystem Respiration in a Mature Eucalypt Woodland: Advantages, Lessons, and Questions. Journal of Geophysical Research G: Biogeosciences, 2021, 126, e2020JG006221.	1.3	3
5	Confronting Racism to Advance Our Science. AGU Advances, 2021, 2, e2020AV000296.	2.3	1
6	Thank You to Our 2020 Peer Reviewers. AGU Advances, 2021, 2, e2021AV000426.	2.3	O
7	Different quantification approaches for nitrogen use efficiency lead to divergent estimates with varying advantages. Nature Food, 2021, 2, 241-245.	6.2	49
8	Fates and Use Efficiency of Nitrogen Fertilizer in Maize Cropping Systems and Their Responses to Technologies and Management Practices: A Global Analysis on Field ¹⁵ N Tracer Studies. Earth's Future, 2021, 9, e2020EF001514.	2.4	34
9	Equitable Exchange: A Framework for Diversity and Inclusion in the Geosciences. AGU Advances, 2021, 2, e2020AV000359.	2.3	14
10	Quantification of global and national nitrogen budgets for crop production. Nature Food, 2021, 2, 529-540.	6.2	108
11	The increasing global environmental consequences of a weakening US–China crop trade relationship. Nature Food, 2021, 2, 578-586.	6.2	18
12	Multiâ€Decadal Carbon Cycle Measurements Indicate Resistance to External Drivers of Change at the Howland Forest AmeriFlux Site. Journal of Geophysical Research G: Biogeosciences, 2021, 126, e2021JG006276.	1.3	15
13	Quantitative assessment of agricultural sustainability reveals divergent priorities among nations. One Earth, 2021, 4, 1262-1277.	3.6	63
14	Global mapping of crop-specific emission factors highlights hotspots of nitrous oxide mitigation. Nature Food, 2021, 2, 886-893.	6.2	68
15	Improving the social cost of nitrous oxide. Nature Climate Change, 2021, 11, 1008-1010.	8.1	16
16	Magnitude and Uncertainty of Nitrous Oxide Emissions From North America Based on Bottomâ€Up and Topâ€Down Approaches: Informing Future Research and National Inventories. Geophysical Research Letters, 2021, 48, e2021GL095264.	1.5	7
17	Identifying Data Needed to Reduce Parameter Uncertainty in a Coupled Microbial Soil C and N Decomposition Model. Journal of Geophysical Research G: Biogeosciences, 2021, 126, .	1.3	О
18	Simultaneous numerical representation of soil microsite production and consumption of carbon dioxide, methane, and nitrous oxide using probability distribution functions. Global Change Biology, 2020, 26, 200-218.	4.2	36

#	Article	IF	Citations
19	A comprehensive quantification of global nitrous oxide sources and sinks. Nature, 2020, 586, 248-256.	13.7	814
20	COSORE: A community database for continuous soil respiration and other soilâ€atmosphere greenhouse gas flux data. Global Change Biology, 2020, 26, 7268-7283.	4.2	50
21	Carbon budget of the Harvard Forest Longâ€Term Ecological Research site: pattern, process, and response to global change. Ecological Monographs, 2020, 90, e01423.	2.4	67
22	Quantifying Onâ€Farm Nitrous Oxide Emission Reductions in Food Supply Chains. Earth's Future, 2020, 8, e2020EF001504.	2.4	19
23	Thank You to Our 2019 Reviewers. AGU Advances, 2020, 1, e2020AV000181.	2.3	0
24	Quantifying Nutrient Budgets for Sustainable Nutrient Management. Global Biogeochemical Cycles, 2020, 34, e2018GB006060.	1.9	96
25	AGU Advances Goes Online. AGU Advances, 2020, 1, e2019AV000105.	2.3	0
26	Carbon dioxide loss from tropical soils increases on warming. Nature, 2020, 584, 198-199.	13.7	7
27	Global Nitrogen and Phosphorus Pollution. , 2020, , 421-431.		4
28	The INI North American Regional Nitrogen Center: 2011–2015 Nitrogen Activities in North America. , 2020, , 489-497.		1
29	Six years of ecosystem-atmosphere greenhouse gas fluxes measured in a sub-boreal forest. Scientific Data, 2019, 6, 117.	2.4	23
30	A World of Cobenefits: Solving the Global Nitrogen Challenge. Earth's Future, 2019, 7, 865-872.	2.4	122
31	Biogeochemical recuperation of lowland tropical forest during succession. Ecology, 2019, 100, e02641.	1.5	19
32	Prolonged tropical forest degradation due to compounding disturbances: Implications for CO ₂ and H ₂ O fluxes. Global Change Biology, 2019, 25, 2855-2868.	4.2	43
33	Acceleration of global N2O emissions seen from two decades of atmospheric inversion. Nature Climate Change, 2019, 9, 993-998.	8.1	229
34	Global soil nitrous oxide emissions since the preindustrial era estimated by an ensemble of terrestrial biosphere models: Magnitude, attribution, and uncertainty. Global Change Biology, 2019, 25, 640-659.	4.2	214
35	Lessons from President George H. W. Bush for the Present Political Environment. Eos, 2019, 100, .	0.1	0
36	Merging a mechanistic enzymatic model of soil heterotrophic respiration into an ecosystem model in two AmeriFlux sites of northeastern USA. Agricultural and Forest Meteorology, 2018, 252, 155-166.	1.9	39

#	Article	IF	Citations
37	Nitrogen Fixation Inputs in Pasture and Early Successional Forest in the Brazilian Amazon Region: Evidence From a Claybox Mesocosm Study. Journal of Geophysical Research G: Biogeosciences, 2018, 123, 712-721.	1.3	12
38	Soil Carbon Dynamics in Soybean Cropland and Forests in Mato Grosso, Brazil. Journal of Geophysical Research G: Biogeosciences, 2018, 123, 18-31.	1.3	22
39	The Millennial model: in search of measurable pools and transformations for modeling soil carbon in the new century. Biogeochemistry, 2018, 137, 51-71.	1.7	139
40	Deep soils modify environmental consequences of increased nitrogen fertilizer use in intensifying Amazon agriculture. Scientific Reports, 2018, 8, 13478.	1.6	56
41	Partitioning soil respiration: quantifying the artifacts of the trenching method. Biogeochemistry, 2018, 140, 53-63.	1.7	34
42	A parsimonious modular approach to building a mechanistic belowground carbon and nitrogen model. Journal of Geophysical Research G: Biogeosciences, 2017, 122, 2418-2434.	1.3	36
43	Nitrogenâ€induced terrestrial eutrophication: cascading effects and impacts on ecosystem services. Ecosphere, 2017, 8, e01877.	1.0	48
44	Red/Blue and Peer Review. Eos, 2017, , .	0.1	0
45	Projections of the soil-carbon deficit. Nature, 2016, 540, 47-48.	13.7	7
46	Constrained partitioning of autotrophic and heterotrophic respiration reduces model uncertainties of forest ecosystem carbon fluxes but not stocks. Journal of Geophysical Research G: Biogeosciences, 2016, 121, 2476-2492.	1.3	25
46	of forest ecosystem carbon fluxes but not stocks. Journal of Geophysical Research G: Biogeosciences,	1.3	25 261
	of forest ecosystem carbon fluxes but not stocks. Journal of Geophysical Research G: Biogeosciences, 2016, 121, 2476-2492. Key ecological responses to nitrogen are altered by climate change. Nature Climate Change, 2016, 6,		
47	of forest ecosystem carbon fluxes but not stocks. Journal of Geophysical Research G: Biogeosciences, 2016, 121, 2476-2492. Key ecological responses to nitrogen are altered by climate change. Nature Climate Change, 2016, 6, 836-843. Isotopically constrained soil carbon and nitrogen budgets in a soybean field chronosequence in the	8.1	261
47	of forest ecosystem carbon fluxes but not stocks. Journal of Geophysical Research G: Biogeosciences, 2016, 121, 2476-2492. Key ecological responses to nitrogen are altered by climate change. Nature Climate Change, 2016, 6, 836-843. Isotopically constrained soil carbon and nitrogen budgets in a soybean field chronosequence in the Brazilian Amazon region. Journal of Geophysical Research G: Biogeosciences, 2016, 121, 2520-2529.	8.1	261 12
47 48 49	of forest ecosystem carbon fluxes but not stocks. Journal of Geophysical Research G: Biogeosciences, 2016, 121, 2476-2492. Key ecological responses to nitrogen are altered by climate change. Nature Climate Change, 2016, 6, 836-843. Isotopically constrained soil carbon and nitrogen budgets in a soybean field chronosequence in the Brazilian Amazon region. Journal of Geophysical Research G: Biogeosciences, 2016, 121, 2520-2529. Seasonality of temperate forest photosynthesis and daytime respiration. Nature, 2016, 534, 680-683. Toward more realistic projections of soil carbon dynamics by Earth system models. Global	8.1 1.3	261 12 196
47 48 49 50	of forest ecosystem carbon fluxes but not stocks. Journal of Geophysical Research G: Biogeosciences, 2016, 121, 2476-2492. Key ecological responses to nitrogen are altered by climate change. Nature Climate Change, 2016, 6, 836-843. Isotopically constrained soil carbon and nitrogen budgets in a soybean field chronosequence in the Brazilian Amazon region. Journal of Geophysical Research G: Biogeosciences, 2016, 121, 2520-2529. Seasonality of temperate forest photosynthesis and daytime respiration. Nature, 2016, 534, 680-683. Toward more realistic projections of soil carbon dynamics by Earth system models. Global Biogeochemical Cycles, 2016, 30, 40-56.	8.1 1.3 13.7	261 12 196 343
47 48 49 50	of forest ecosystem carbon fluxes but not stocks. Journal of Geophysical Research G: Biogeosciences, 2016, 121, 2476-2492. Key ecological responses to nitrogen are altered by climate change. Nature Climate Change, 2016, 6, 836-843. Isotopically constrained soil carbon and nitrogen budgets in a soybean field chronosequence in the Brazilian Amazon region. Journal of Geophysical Research G: Biogeosciences, 2016, 121, 2520-2529. Seasonality of temperate forest photosynthesis and daytime respiration. Nature, 2016, 534, 680-683. Toward more realistic projections of soil carbon dynamics by Earth system models. Global Biogeochemical Cycles, 2016, 30, 40-56. Nutrients in the nexus. Journal of Environmental Studies and Sciences, 2016, 6, 25-38. The Economic and Environmental Consequences of Implementing Nitrogen-Efficient Technologies and	8.1 1.3 13.7 1.9	261 12 196 343

#	Article	IF	CITATIONS
55	Using O ₂ to study the relationships between soil CO ₂ efflux and soil respiration. Biogeosciences, 2015, 12, 2089-2099.	1.3	62
56	Sensitivity of decomposition rates of soil organic matter with respect to simultaneous changes in temperature and moisture. Journal of Advances in Modeling Earth Systems, 2015, 7, 335-356.	1.3	252
57	Soil carbon in a beer can. Nature Geoscience, 2015, 8, 748-749.	5.4	11
58	The Susceptibility of Southeastern Amazon Forests to Fire: Insights from a Large-Scale Burn Experiment. BioScience, 2015, 65, 893-905.	2.2	89
59	Managing nitrogen for sustainable development. Nature, 2015, 528, 51-59.	13.7	1,635
60	Modeling the impact of net primary production dynamics on post-disturbance Amazon savannization. Anais Da Academia Brasileira De Ciencias, 2014, 86, 621-632.	0.3	6
61	High temporal frequency measurements of greenhouse gas emissions from soils. Biogeosciences, 2014, 11, 2709-2720.	1.3	92
62	Nitrogen Deposition Effects on Ecosystem Services and Interactions with other Pollutants and Climate Change., 2014, , 493-505.		5
63	Inventories and scenarios of nitrous oxide emissions. Environmental Research Letters, 2014, 9, 105012.	2.2	243
64	The Effects of Atmospheric Nitrogen Deposition on Terrestrial and Freshwater Biodiversity., 2014, , 465-480.		10
65	Abrupt increases in Amazonian tree mortality due to drought–fire interactions. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 6347-6352.	3.3	576
66	A bigâ€microsite framework for soil carbon modeling. Global Change Biology, 2014, 20, 3610-3620.	4.2	60
67	Forgive us our carbon debts. Nature Climate Change, 2014, 4, 538-539.	8.1	3
68	N-related greenhouse gases in North America: innovations for a sustainable future. Current Opinion in Environmental Sustainability, 2014, 9-10, 1-8.	3.1	28
69	Interactions between repeated fire, nutrients, and insect herbivores affect the recovery of diversity in the southern Amazon. Oecologia, 2013, 172, 219-229.	0.9	35
70	Roads as nitrogen deposition hot spots. Biogeochemistry, 2013, 114, 149-163.	1.7	49
71	Impacts of human alteration of the nitrogen cycle in the US on radiative forcing. Biogeochemistry, 2013, 114, 25-40.	1.7	51
72	Watershed responses to Amazon soya bean cropland expansion and intensification. Philosophical Transactions of the Royal Society B: Biological Sciences, 2013, 368, 20120425.	1.8	71

#	Article	IF	Citations
73	Rate my data: quantifying the value of ecological data for the development of models of the terrestrial carbon cycle. Ecological Applications, 2013, 23, 273-286.	1.8	74
74	The role of nitrogen in climate change and the impacts of nitrogen–climate interactions in the United States: foreword to thematic issue. Biogeochemistry, 2013, 114, 1-10.	1.7	95
75	Diel patterns of autotrophic and heterotrophic respiration among phenological stages. Global Change Biology, 2013, 19, 1151-1159.	4.2	106
76	Longâ€term changes in forest carbon under temperature and nitrogen amendments in a temperate northern hardwood forest. Global Change Biology, 2013, 19, 2389-2400.	4.2	41
77	Soil respiration in a northeastern US temperate forest: a 22â€year synthesis. Ecosphere, 2013, 4, 1-28.	1.0	83
78	Foundation species loss affects vegetation structure more than ecosystem function in a northeastern USA forest. PeerJ, 2013, 1, e41.	0.9	60
79	Representative concentration pathways and mitigation scenarios for nitrous oxide. Environmental Research Letters, 2012, 7, 024005.	2.2	52
80	Climate change impacts of US reactive nitrogen. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 7671-7675.	3.3	126
81	Stoichiometric patterns in foliar nutrient resorption across multiple scales. New Phytologist, 2012, 196, 173-180.	3.5	190
82	Soil and tree response to P fertilization in a secondary tropical forest supported by an Oxisol. Biology and Fertility of Soils, 2012, 48, 665-678.	2.3	9
83	Predicting decadal trends and transient responses of radiocarbon storage and fluxes in a temperate forest soil. Biogeosciences, 2012, 9, 3013-3028.	1.3	24
84	Global agriculture and nitrous oxide emissions. Nature Climate Change, 2012, 2, 410-416.	8.1	729
85	The Amazon basin in transition. Nature, 2012, 481, 321-328.	13.7	922
86	The <scp>D < /scp>ual <scp>A < /scp>rrhenius and <scp>M < /scp>ichaelisâ € " <scp>M < /scp>enten kinetics model for decomposition of soil organic matter at hourly to seasonal time scales. Global Change Biology, 2012, 18, 371-384.</scp></scp></scp></scp>	4.2	349
87	Endogenous circadian regulation of carbon dioxide exchange in terrestrial ecosystems. Global Change Biology, 2012, 18, 1956-1970.	4.2	35
88	Using modelâ€data fusion to interpret past trends, and quantify uncertainties in future projections, of terrestrial ecosystem carbon cycling. Global Change Biology, 2012, 18, 2555-2569.	4.2	161
89	Equivalent water thickness in savanna ecosystems: MODIS estimates based on ground and EO-1 Hyperion data. International Journal of Remote Sensing, 2011, 32, 7423-7440.	1.3	19
90	Coordinated approaches to quantify longâ€term ecosystem dynamics in response to global change. Global Change Biology, 2011, 17, 843-854.	4.2	165

#	Article	IF	Citations
91	Temperature and soil organic matter decomposition rates - synthesis of current knowledge and a way forward. Global Change Biology, 2011, 17, 3392-3404.	4.2	1,143
92	Phosphorus cycling in a small watershed in the Brazilian Cerrado: impacts of frequent burning. Biogeochemistry, 2011, 105, 105-118.	1.7	46
93	Land–Water interactions in the amazon. Biogeochemistry, 2011, 105, 1-5.	1.7	10
94	The first principles for climatic stabilization. Carbon Management, 2011, 2, 605-606.	1.2	3
95	Soil respiration at mean annual temperature predicts annual total across vegetation types and biomes. Biogeosciences, 2010, 7, 2147-2157.	1.3	99
96	Estimating parameters of a forest ecosystem C model with measurements of stocks and fluxes as joint constraints. Oecologia, 2010, 164, 25-40.	0.9	153
97	Nitrogen in Runoff from Residential Roads in a Coastal Area. Water, Air, and Soil Pollution, 2010, 210, 3-13.	1.1	35
98	Soil moisture depletion under simulated drought in the Amazon: impacts on deep root uptake. New Phytologist, 2010, 187, 592-607.	3.5	181
99	Nonfrontier Deforestation in the Eastern Amazon. Earth Interactions, 2010, 14, 1-15.	0.7	14
100	Permafrost and Wetland Carbon Stocks. Science, 2010, 330, 1176-1177.	6.0	8
101	Nitrogen and phosphorus additions negatively affect tree species diversity in tropical forest regrowth trajectories. Ecology, 2010, 91, 2121-2131.	1.5	63
102	Global assessment of nitrogen deposition effects on terrestrial plant diversity: a synthesis. Ecological Applications, 2010, 20, 30-59.	1.8	2,063
103	Landâ€use effects on the chemical attributes of lowâ€order streams in the eastern Amazon. Journal of Geophysical Research, 2010, 115, .	3.3	41
104	Dissolved CO ₂ in small catchment streams of eastern Amazonia: A minor pathway of terrestrial carbon loss. Journal of Geophysical Research, 2010, 115, .	3.3	43
105	Distribution of nitrogen-15 tracers applied to the canopy of a mature spruce-hemlock stand, Howland, Maine, USA. Oecologia, 2009, 160, 589-599.	0.9	80
106	New approaches to modeling denitrification. Biogeochemistry, 2009, 93, 1-5.	1.7	29
107	The potential ecological costs and cobenefits of REDD: a critical review and case study from the Amazon region. Global Change Biology, 2009, 15, 2803-2824.	4.2	157
108	The contribution of manure and fertilizer nitrogen to atmospheric nitrous oxide since 1860. Nature Geoscience, 2009, 2, 659-662.	5.4	842

#	Article	IF	CITATIONS
109	Linking woody species diversity with plant available water at a landscape scale in a Brazilian savanna. Journal of Vegetation Science, 2009, 20, 826-835.	1.1	10
110	Three scales of temporal resolution from automated soil respiration measurements. Agricultural and Forest Meteorology, 2009, 149, 2012-2021.	1.9	76
111	Biogeochemistry and ecology of terrestrial ecosystems of Amazonia. Geophysical Monograph Series, 2009, , 293-297.	0.1	9
112	Is Temporal Variation of Soil Respiration Linked to the Phenology of Photosynthesis?., 2009, , 187-199.		23
113	Nutrient limitations to secondary forest regrowth. Geophysical Monograph Series, 2009, , 299-309.	0.1	7
114	The effects of drought on Amazonian rain forests. Geophysical Monograph Series, 2009, , 429-449.	0.1	39
115	The regional carbon budget. Geophysical Monograph Series, 2009, , 409-428.	0.1	10
116	Iron interference in the quantification of nitrate in soil extracts and its effect on hypothesized abiotic immobilization of nitrate. Biogeochemistry, 2008, 90, 65-73.	1.7	31
117	Abiotic immobilization of nitrate in two soils of relic Abies pinsapo-fir forests under Mediterranean climate. Biogeochemistry, 2008, 91, 1-11.	1.7	18
118	Fluxes of CH4, CO2, NO, and N2O in an improved fallow agroforestry system in eastern Amazonia. Agriculture, Ecosystems and Environment, 2008, 126, 113-121.	2.5	30
119	Fixing forests. Nature Geoscience, 2008, 1, 422-422.	5.4	10
120	A conceptual and practical approach to data quality and analysis procedures for highâ€frequency soil respiration measurements. Functional Ecology, 2008, 22, 1000-1007.	1.7	94
121	An integrated greenhouse gas assessment of an alternative to slashâ€andâ€burn agriculture in eastern Amazonia. Global Change Biology, 2008, 14, 998-1007.	4.2	89
122	Effects of an experimental drought and recovery on soil emissions of carbon dioxide, methane, nitrous oxide, and nitric oxide in a moist tropical forest. Global Change Biology, 2008, 14, 2582-2590.	4.2	145
123	Objective indicators of pasture degradation from spectral mixture analysis of Landsat imagery. Journal of Geophysical Research, 2008, 113, .	3.3	21
124	Estimating Seasonal Changes in Volumetric Soil Water Content at Landscape Scales in a Savanna Ecosystem Using Two-Dimensional Resistivity Profiling. Earth Interactions, 2008, 12, 1-25.	0.7	24
125	Drought effects on litterfall, wood production and belowground carbon cycling in an Amazon forest: results of a throughfall reduction experiment. Philosophical Transactions of the Royal Society B: Biological Sciences, 2008, 363, 1839-1848.	1.8	286
126	Modeling the effects of throughfall reduction on soil water content in a Brazilian Oxisol under a moist tropical forest. Water Resources Research, 2007, 43, .	1.7	30

#	Article	IF	Citations
127	Nutrients in synergy. Nature, 2007, 449, 1000-1001.	13.7	115
128	Recuperation of nitrogen cycling in Amazonian forests following agricultural abandonment. Nature, 2007, 447, 995-998.	13.7	381
129	Vertical partitioning of CO ₂ production within a temperate forest soil. Global Change Biology, 2007, 13, 922-922.	4.2	10
130	Spatial variation in vegetation structure coupled to plant available water determined by two-dimensional soil resistivity profiling in a Brazilian savanna. Oecologia, 2007, 153, 417-430.	0.9	48
131	Changes in Canopy Processes Following Whole-Forest Canopy Nitrogen Fertilization of a Mature Spruce-Hemlock Forest. Ecosystems, 2007, 10, 1133-1147.	1.6	129
132	THE ENIGMA OF PROGRESS IN DENITRIFICATION RESEARCH., 2006, 16, 2057-2063.		110
133	Comparing simple respiration models for eddy flux and dynamic chamber data. Agricultural and Forest Meteorology, 2006, 141, 219-234.	1.9	120
134	CO2-driven cation leaching after tropical forest clearing. Journal of Geochemical Exploration, 2006, 88, 214-219.	1.5	7
135	Denitrification Across Landscapes and Waterscapes 1., 2006, 16, 2055-2056.		9
136	Effects of experimental drought on soil respiration and radiocarbon efflux from a temperate forest soil. Global Change Biology, 2006, 12, 177-193.	4.2	252
137	A distinct seasonal pattern of the ratio of soil respiration to total ecosystem respiration in a spruce-dominated forest. Global Change Biology, 2006, 12, 230-239.	4.2	170
138	On the variability of respiration in terrestrial ecosystems: moving beyond Q 10. Global Change Biology, 2006, 12, 154-164.	4.2	1,055
139	Vertical partitioning of CO2 production within a temperate forest soil. Global Change Biology, 2006, 12, 944-956.	4.2	135
140	Temperature sensitivity of soil carbon decomposition and feedbacks to climate change. Nature, 2006, 440, 165-173.	13.7	5,114
141	Effect of summer throughfall exclusion, summer drought, and winter snow cover on methane fluxes in a temperate forest soil. Soil Biology and Biochemistry, 2006, 38, 1388-1395.	4.2	134
142	Dissolved rainfall inputs and streamwater outputs in an undisturbed watershed on highly weathered soils in the Brazilian cerrado. Hydrological Processes, 2006, 20, 2615-2639.	1.1	33
143	Deep root function in soil water dynamics in cerrado savannas of central Brazil. Functional Ecology, 2005, 19, 574-581.	1.7	246
144	Legacy of fire slows carbon accumulation in Amazonian forest regrowth. Frontiers in Ecology and the Environment, 2005, 3, 365-369.	1.9	111

#	Article	lF	CITATIONS
145	Legacy of Fire Slows Carbon Accumulation in Amazonian Forest Regrowth. Frontiers in Ecology and the Environment, 2005, 3, 365.	1.9	1
146	ECOLOGICAL RESEARCH IN THE LARGE-SCALE BIOSPHERE– ATMOSPHERE EXPERIMENT IN AMAZONIA: EARLY RESULTS. , 2004, 14, 3-16.		130
147	NITROGEN AND PHOSPHORUS LIMITATION OF BIOMASS GROWTH IN A TROPICAL SECONDARY FOREST. , 2004, 14, 150-163.		250
148	Effects of an experimental drought on soil emissions of carbon dioxide, methane, nitrous oxide, and nitric oxide in a moist tropical forest. Global Change Biology, 2004, 10, 718-730.	4.2	239
149	Spatial and temporal variability in forest-atmosphere CO2 exchange. Global Change Biology, 2004, 10, 1689-1706.	4.2	318
150	CO2 flux from soil in pastures and forests in southwestern Amazonia. Global Change Biology, 2004, 10, 833-843.	4.2	87
151	Globally significant changes in biological processes of the Amazon Basin: results of the Large-scale Biosphere-Atmosphere Experiment. Global Change Biology, 2004, 10, 519-529.	4.2	96
152	Changes in Carbon Storage and Net Carbon Exchange One Year After an Initial Shelterwood Harvest at Howland Forest, ME. Environmental Management, 2004, 33, S9.	1.2	26
153	Satellite-based modeling of gross primary production in an evergreen needleleaf forest. Remote Sensing of Environment, 2004, 89, 519-534.	4.6	682
154	Loss of nutrients from terrestrial ecosystems to streams and the atmosphere following land use change in Amazonia. Geophysical Monograph Series, 2004, , 147-158.	0.1	27
155	Moisture and substrate availability constrain soil trace gas fluxes in an eastern Amazonian regrowth forest. Global Biogeochemical Cycles, 2004, 18, n/a-n/a.	1.9	83
156	NUTRIENT LOSS AND REDISTRIBUTION AFTER FOREST CLEARING ON A HIGHLY WEATHERED SOIL IN AMAZONIA. , 2004, 14, 177-199.		135
157	Chronic nitrogen additions reduce total soil respiration and microbial respiration in temperate forest soils at the Harvard Forest. Forest Ecology and Management, 2004, 196, 43-56.	1.4	400
158	Short-term soil respiration and nitrogen immobilization response to nitrogen applications in control and nitrogen-enriched temperate forests. Forest Ecology and Management, 2004, 196, 57-70.	1.4	114
159	Classifying successional forests using Landsat spectral properties and ecological characteristics in eastern Amazônia. Remote Sensing of Environment, 2003, 87, 470-481.	4.6	165
160	Leaf-cutting ant (Atta Sexdens) and nutrient cycling: deep soil inorganic nitrogen stocks, mineralization, and nitrification in Eastern Amazonia. Soil Biology and Biochemistry, 2003, 35, 1219-1222.	4.2	42
161	A mechanism of abiotic immobilization of nitrate in forest ecosystems: the ferrous wheel hypothesis. Global Change Biology, 2003, 9, 228-236.	4.2	277
162	Contribution of soil respiration in tropical, temperate, and boreal forests to the 18O enrichment of atmospheric O2. Global Biogeochemical Cycles, 2003, 17, n/a-n/a.	1.9	36

#	Article	IF	Citations
163	INFLUENCE OF LEAF-CUTTING ANT NESTS ON SECONDARY FOREST GROWTH AND SOIL PROPERTIES IN AMAZONIA. Ecology, 2003, 84, 1265-1276.	1.5	122
164	A comparison of manual and automated systems for soil CO2 flux measurements: trade-offs between spatial and temporal resolution. Journal of Experimental Botany, 2003, 54, 891-899.	2.4	193
165	Drying and Wetting Effects on Carbon Dioxide Release from Organic Horizons. Soil Science Society of America Journal, 2003, 67, 1888-1896.	1.2	192
166	Effects of Varying Salinity on Phytoplankton Growth in a Low-Salinity Coastal Pond Under Two Nutrient Conditions. Biological Bulletin, 2002, 203, 260-261.	0.7	22
167	Nutrient Limitation of Phytoplankton Growth in Vineyard Sound and Oyster Pond, Falmouth, Massachusetts. Biological Bulletin, 2002, 203, 261-263.	0.7	2
168	The effects of partial throughfall exclusion on canopy processes, aboveground production, and biogeochemistry of an Amazon forest. Journal of Geophysical Research, 2002, 107, LBA 53-1.	3.3	316
169	Minimizing artifacts and biases in chamber-based measurements of soil respiration. Agricultural and Forest Meteorology, 2002, 113, 21-37.	1.9	622
170	Belowground carbon allocation in forests estimated from litterfall and IRGA-based soil respiration measurements. Agricultural and Forest Meteorology, 2002, 113, 39-51.	1.9	260
171	Unexpected results of a pilot throughfall exclusion experiment on soil emissions of CO $_2$, CH $_4$, N $_2$ O, and NO in eastern Amazonia. Biology and Fertility of Soils, 2002, 36, 102-108.	2.3	42
172	Former land-use and tree species affect nitrogen oxide emissions from a tropical dry forest. Oecologia, 2002, 130, 297-308.	0.9	68
173	Site and temporal variation of soil respiration in European beech, Norway spruce, and Scots pine forests. Global Change Biology, 2002, 8, 1205-1216.	4.2	167
174	Uncertain sinks in the shrubs. Nature, 2002, 418, 593-594.	13.7	64
175	Interannual variation of soil respiration in two New England forests. Global Biogeochemical Cycles, 2001, 15, 337-350.	1.9	220
176	Ecosystem modeling and dynamic effects of deforestation on trace gas fluxes in Amazon tropical forests. Forest Ecology and Management, 2001, 152, 97-117.	1.4	38
177	Emissions of Nitrous Oxide and Nitric Oxide from Soils of Native and Exotic Ecosystems of the Amazon and Cerrado Regions of Brazil. Scientific World Journal, The, 2001, 1, 312-319.	0.8	29
178	Nitrogen Oxide Fluxes and Nitrogen Cycling during Postagricultural Succession and Forest Fertilization in the Humid Tropics. Ecosystems, 2001, 4, 67-84.	1.6	141
179	The age of fine-root carbon in three forests of the eastern United States measured by radiocarbon. Oecologia, 2001, 129, 420-429.	0.9	235
180	Rapid abiotic transformation of nitrate in an acid forest soil. Biogeochemistry, 2001, 54, 131-146.	1.7	157

#	Article	IF	Citations
181	Control of cation concentrations in stream waters by surface soil processes in an Amazonian watershed. Nature, 2001, 410, 802-805.	13.7	125
182	Fertile forest experiments. Nature, 2001, 411, 431-433.	13.7	40
183	Soil warming and organic carbon content. Nature, 2000, 408, 789-790.	13.7	413
184	Title is missing!. Biogeochemistry, 2000, 48, 53-69.	1.7	705
185	Title is missing!. Biogeochemistry, 2000, 51, 33-69.	1.7	524
186	Land-Use Change and Biogeochemical Controls of Methane Fluxes in Soils of Eastern Amazonia. Ecosystems, 2000, 3, 41-56.	1.6	225
187	Isotopic variability of N2O emissions from tropical forest soils. Global Biogeochemical Cycles, 2000, 14, 525-535.	1.9	124
188	Testing the Hole-in-the-Pipe Model of nitric and nitrous oxide emissions from soils using the TRAGNET Database. Global Biogeochemical Cycles, 2000, 14, 1035-1043.	1.9	158
189	Testing a Conceptual Model of Soil Emissions of Nitrous and Nitric Oxides. BioScience, 2000, 50, 667.	2.2	743
190	Soil carbon dynamics in regrowing forest of eastern Amazonia. Global Change Biology, 1999, 5, 693-702.	4.2	85
191	Seasonal patterns and environmental control of carbon dioxide and water vapour exchange in an ecotonal boreal forest. Global Change Biology, 1999, 5, 891-902.	4.2	275
192	Positive Feedbacks in the Fire Dynamic of Closed Canopy Tropical Forests. Science, 1999, 284, 1832-1835.	6.0	847
193	Soil nitrogen cycling and nitrogen oxide emissions along a pasture chronosequence in the humid tropics of Costa Rica. Soil Biology and Biochemistry, 1999, 31, 387-394.	4.2	47
194	Land use change and biogeochemical controls of nitrogen oxide emissions from soils in eastern Amazonia. Global Biogeochemical Cycles, 1999, 13, 31-46.	1.9	275
195	Biotic Feedbacks in the Warming of the Earth. Climatic Change, 1998, 40, 495-518.	1.7	98
196	Soil water content and temperature as independent or confounded factors controlling soil respiration in a temperate mixed hardwood forest. Global Change Biology, 1998, 4, 217-227.	4.2	1,598
197	Regional application of an ecosystem production model for studies of biogeochemistry in Brazilian Amazonia. Global Change Biology, 1998, 4, 315-333.	4.2	87
198	Soil Carbon stocks and their rates of accumulation and loss in a boreal forest landscape. Global Biogeochemical Cycles, 1998, 12, 687-701.	1.9	106

#	Article	IF	Citations
199	Missing sinks, feedbacks, and understanding the role of terrestrial ecosystems in the global carbon balance. Global Biogeochemical Cycles, 1998, 12, 25-34.	1.9	222
200	MODEL ESTIMATES OF REGIONAL NITRIC OXIDE EMISSIONS FROM SOILS OF THE SOUTHEASTERN UNITED STATES. , 1998, 8, 748-759.		32
201	A global inventory of nitric oxide emissions from soils. , 1997, 48, 37-50.		403
202	Process modeling of controls on nitrogen trace gas emissions from soils worldwide. Journal of Geophysical Research, 1996, 101, 1361-1377.	3.3	312
203	Nitrous Oxide Emission Controls and Inorganic Nitrogen Dynamics in Fertilized Tropical Agricultural Soils. Soil Science Society of America Journal, 1996, 60, 1145-1152.	1.2	42
204	Spatial covariation of soil organic carbon, clay content, and drainage class at a regional scale. Landscape Ecology, 1995, 10, 349-362.	1.9	46
205	Gas diffusivity and production of CO2 in deep soils of the eastern Amazon. Tellus, Series B: Chemical and Physical Meteorology, 1995, 47, 550-565.	0.8	163
206	Pasture soils as carbon sink. Nature, 1995, 376, 472-473.	13.7	46
207	Belowground cycling of carbon in forests and pastures of eastern Amazonia. Global Biogeochemical Cycles, 1995, 9, 515-528.	1.9	429
208	The role of deep roots in the hydrological and carbon cycles of Amazonian forests and pastures. Nature, 1994, 372, 666-669.	13.7	1,232
209	Soil heterogeneity can mask the effects of ammonium availability on nitrification. Soil Biology and Biochemistry, 1994, 26, 1449-1453.	4.2	37
210	Changes in soil carbon inventories following cultivation of previously untilled soils. Biogeochemistry, 1993, 20, 161-193.	1.7	781
211	Estimating regional carbon stocks and spatially covarying edaphic factors using soil maps at three scales. Biogeochemistry, 1993, 22, 107-131.	1.7	70
212	Processes Regulating Soil Emissions of NO and N^2O in a Seasonally Dry Tropical Forest. Ecology, 1993, 74, 130-139.	1.5	410
213	Soil Water Content and the Ratio of Nitrous Oxide to Nitric Oxide Emitted from Soil., 1993,, 369-386.		141
214	Internal Cycling of Nitrate in Soils of a Mature Coniferous Forest. Ecology, 1992, 73, 1148-1156.	1.5	377
215	Sources of Nitric Oxide and Nitrous Oxide following Wetting of Dry Soil. Soil Science Society of America Journal, 1992, 56, 95-102.	1.2	370
216	Soil emissions of nitric oxide in a seasonally dry tropical forest of México. Journal of Geophysical Research, 1991, 96, 15439-15445.	3.3	156

#	Article	IF	Citations
217	Measuring gross nitrogen mineralization, and nitrification by 15 N isotopic pool dilution in intact soil cores. Journal of Soil Science, 1991, 42, 335-349.	1.2	500
218	Sources of nitrous oxide production following wetting of dry soil. FEMS Microbiology Ecology, 1991, 8, 117-124.	1.3	63
219	Nitrous oxide dissolved in soil solution: An insignificant pathway of nitrogen loss from a southeastern hardwood forest. Water Resources Research, 1990, 26, 1687-1690.	1.7	14
220	Carbon dioxide and nitrogenous gases in the soil atmosphere. Journal of Geochemical Exploration, 1990, 38, 13-41.	1.5	145
221	Direct extraction of microbial biomass nitrogen from forest and grassland soils of california. Soil Biology and Biochemistry, 1989, 21, 773-778.	4.2	90
222	Measurement of Nitrous Oxide Dissolved in Soil Solution. Soil Science Society of America Journal, 1988, 52, 1201-1203.	1.2	47
223	Assessing available carbon: Comparison of techniques across selected forest soils. Communications in Soil Science and Plant Analysis, 1987, 18, 45-64.	0.6	122
224	FOLIAR MINERAL ELEMENTS IN NATIVE PLANTS ON CONTRASTING ROCK TYPES. Soil Science, 1987, 144, 190-202.	0.9	8
225	Distinguishing between Nitrification and Denitrification as Sources of Gaseous Nitrogen Production in Soil. Applied and Environmental Microbiology, 1986, 52, 1280-1286.	1.4	194
226	Environmental Parameters Regulating Gaseous Nitrogen Losses from Two Forested Ecosystems via Nitrification and Denitrification. Applied and Environmental Microbiology, 1986, 52, 1287-1292.	1.4	163
227	Evaluation of the Most Probable Number Method for Enumerating Denitrifying Bacteria. Soil Science Society of America Journal, 1985, 49, 642-645.	1.2	27
228	Oligotrophic Tillandsia circinnata Schlecht (Bromeliaceae): An Assessment of Its Patterns of Mineral Allocation and Reproduction. American Journal of Botany, 1979, 66, 386.	0.8	22
229	Processes for Production and Consumption of Gaseous Nitrogen Oxides in Soil. ASA Special Publication, 0, , 79-93.	0.8	38
230	Nitrogen Mineralization, Immobilization, and Nitrification. Soil Science Society of America Book Series, 0, , 985-1018.	0.3	329