Pablo Maldonado

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6474857/publications.pdf

Version: 2024-02-01

53 papers 3,130 citations

304743 22 h-index 52 g-index

55 all docs 55 docs citations

55 times ranked 3722 citing authors

#	Article	IF	CITATIONS
1	Efficient metallic spintronic emitters of ultrabroadband terahertz radiation. Nature Photonics, 2016, 10, 483-488.	31.4	605
2	Terahertz spin current pulses controlled by magnetic heterostructures. Nature Nanotechnology, 2013, 8, 256-260.	31.5	476
3	Ultrafast magnetization enhancement in metallic multilayers driven by superdiffusive spin current. Nature Communications, 2012, 3, 1037.	12.8	324
4	Observation of topological nodal fermion semimetal phase in ZrSiS. Physical Review B, 2016, 93, .	3.2	309
5	Ultrafast spin transport as key to femtosecond demagnetization. Nature Materials, 2013, 12, 332-336. Tunability of the topological nodal-line semimetal phase in <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:mi>ZrSi</mml:mi><mml:mi>X<td>27.5 mi><td>262 mrow></td></td></mml:mi></mml:mrow></mml:math>	27.5 mi> <td>262 mrow></td>	262 mrow>
6			

#	Article	IF	CITATIONS
19	Contribution of Energetically Reactive Surface Features to the Dissolution of CeO ₂ and ThO ₂ Analogues for Spent Nuclear Fuel Microstructures. ACS Applied Materials & Samp; Interfaces, 2014, 6, 12279-12289.	8.0	30
20	<i>Ab Initio</i> Atomistic Thermodynamics of Water Reacting with Uranium Dioxide Surfaces. Journal of Physical Chemistry C, 2014, 118, 8491-8500.	3.1	26
21	Ab Initio Prediction of Surface Stability of Fluorite Materials and Experimental Verification. Journal of Physical Chemistry C, 2013, 117, 6639-6650.	3.1	24
22	Theory of out-of-equilibrium electron and phonon dynamics in metals after femtosecond laser excitation. Physical Review B, 2020, 102, .	3.2	24
23	Quantum Monte Carlo ground state energies for the singly charged ions from Li through Ar. Journal of Chemical Physics, 2010, 133, 064102.	3.0	17
24	Transport theory for femtosecond laser-induced spin-transfer torques. Journal of Physics Condensed Matter, 2018, 30, 115801.	1.8	17
25	Crystal dynamics and thermal properties of neptunium dioxide. Physical Review B, 2016, 93, .	3.2	16
26	Distinct multiple fermionic states in a single topological metal. Nature Communications, 2018, 9, 3002.	12.8	16
27	Element-selective investigation of femtosecond spin dynamics in NiPd magnetic alloys using extreme ultraviolet radiation. Physical Review B, 2018, 97, .	3.2	14
28	Possible Demonstration of a Polaronic Bose-Einstein(-Mott) Condensate in UO2(+x) by Ultrafast THz Spectroscopy and Microwave Dissipation. Scientific Reports, 2015, 5, 15278.	3.3	13
29	High-frequency magnon excitation due to femtosecond spin-transfer torques. Physical Review B, 2020, 101, .	3.2	13
30	Numerical-parameterized optimized effective potential for atoms. Journal of Physics B: Atomic, Molecular and Optical Physics, 2006, 39, 3575-3585.	1.5	12
31	Quantum Monte Carlo ground state energies for the atoms Li through Ar. Journal of Chemical Physics, 2009, 131, 044115.	3.0	12
32	Two-step spin-switchable tetranuclear Fe(II) molecular solid: <i>Ab initio</i> theory and predictions. Physical Review B, 2013, 88, .	3.2	12
33	Quantum Monte Carlo ionization potential and electron affinity for transition metal atoms. Chemical Physics Letters, 2013, 559, 12-17.	2.6	12
34	Domain wall dynamics due to femtosecond laser-induced superdiffusive spin transport. Physical Review B, 2020, 101, .	3.2	12
35	Quantum Monte Carlo for 3d Transition-Metal Atoms. Journal of Physical Chemistry A, 2008, 112, 2074-2076.	2.5	11
36	Magnetic exchange coupling of a synthetic Co(ii)-complex to a ferromagnetic Ni substrate. Chemical Communications, 2013, 49, 10736.	4.1	11

#	Article	IF	CITATIONS
37	Reply to 'Optical excitation of thin magnetic layers in multilayer structures'. Nature Materials, 2014, 13, 102-103.	27.5	11
38	Relativistic effects on complexity indexes in atoms in position and momentum spaces. Physics Letters, Section A: General, Atomic and Solid State Physics, 2010, 374, 3847-3853.	2.1	10
39	Nonequilibrium sub–10 nm spin-wave soliton formation in FePt nanoparticles. Science Advances, 2022, 8, eabn0523.	10.3	10
40	Jastrow correlated and quantum Monte Carlo calculations for the low-lying states of the carbon atom. Journal of Chemical Physics, 2011, 134, 134102.	3.0	9
41	Single-shot Monitoring of Ultrafast Processes via X-ray Streaking at a Free Electron Laser. Scientific Reports, 2017, 7, 7253.	3.3	9
42	Microscopic theory of ultrafast out-of-equilibrium magnon-phonon dynamics in insulators. Physical Review B, 2019, 100, .	3.2	9
43	Optimized effective potential energies and ionization potentials for the atoms Li to Ra. European Physical Journal D, 2008, 50, 229-235.	1.3	8
44	Numerical-parameterized relativistic optimized effective potential for atoms. Journal of Physics B: Atomic, Molecular and Optical Physics, 2007, 40, 3045-3056.	1.5	5
45	Doppler broadening of neutron-induced resonances using ab initio phonon spectrum. European Physical Journal Plus, 2018, 133, 1.	2.6	5
46	Relativistic, numerically parameterized, optimized, effective potentials for the ground state of the atoms He through Ra. Atomic Data and Nuclear Data Tables, 2011, 97, 109-133.	2.4	4
47	Relativistic quantum similarities in atoms in position and momentum spaces. Physics Letters, Section A: General, Atomic and Solid State Physics, 2011, 375, 2544-2549.	2.1	4
48	Near Degeneracy Effects on the Low-Lying Spectrum of the Iron Atom. Journal of Physical Chemistry A, 2010, 114, 1953-1956.	2.5	3
49	Explicitly correlated wave functions for atoms and singly charged ions from Li through Sr: Variational and Diffusion Monte Carlo results. Chemical Physics Letters, 2014, 615, 21-25.	2.6	2
50	Magnetic, electrical, and thermodynamic properties of NpIr: Ambient and high-pressure measurements, and electronic structure calculations. Physical Review B, 2015, 91, .	3.2	2
51	Dynamical correlation effects in the transition probability: A study for the atoms Li to Ar. Chemical Physics Letters, 2012, 548, 1-6.	2.6	1
52	Study of Ultrafast Magnetism by THz Emission Spectroscopy. , 2019, , .		0
53	Ultrafast Magnetization Dynamics Revealed by Terahertz Magnetometry. , 2020, , .		0