Jinggang Lan

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/647462/publications.pdf

Version: 2024-02-01

23	854	14	22
papers	citations	h-index	g-index
34	34	34	1065
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Origin of Efficient Catalytic Combustion of Methane over Co ₃ O ₄ (110): Active Low-Coordination Lattice Oxygen and Cooperation of Multiple Active Sites. ACS Catalysis, 2016, 6, 5508-5519.	11.2	116
2	Bifunctional Single Atom Electrocatalysts: Coordination–Performance Correlations and Reaction Pathways. ACS Nano, 2020, 14, 13279-13293.	14.6	107
3	Dynamics and control of active sites in hierarchically nanostructured cobalt phosphide/chalcogenide-based electrocatalysts for water splitting. Energy and Environmental Science, 2022, 15, 727-739.	30.8	96
4	Pure Siliceous Zeolite-Supported Ru Single-Atom Active Sites for Ammonia Synthesis. Chemistry of Materials, 2019, 31, 9413-9421.	6.7	83
5	Ultralow-temperature CO oxidation on an In ₂ O ₄ catalyst: a strategy to tune CO adsorption strength and oxygen activation simultaneously. Chemical Communications, 2014, 50, 6835-6838.	4.1	73
6	Modeling Electrified Pt(111)-H _{ad} /Water Interfaces from Ab Initio Molecular Dynamics. Jacs Au, 2021, 1, 569-577.	7.9	56
7	Ionization of Water as an Effect of Quantum Delocalization at Aqueous Electrode Interfaces. Journal of Physical Chemistry Letters, 2020, 11, 3724-3730.	4.6	39
8	Characterization of the Platinum–Hydrogen Bond by Surface-Sensitive Time-Resolved Infrared Spectroscopy. Journal of Physical Chemistry Letters, 2018, 9, 1254-1259.	4.6	38
9	Simulating the ghost: quantum dynamics of the solvated electron. Nature Communications, 2021, 12, 766.	12.8	36
10	First-Principles Simulations of an Aqueous CO/Pt(111) Interface. Journal of Physical Chemistry C, 2018, 122, 24068-24076.	3.1	35
11	Solution Phase and Surface Photoisomerization of a Hydrazone Switch with a Long Thermal Half-Life. Journal of the American Chemical Society, 2019, 141, 17637-17645.	13.7	30
12	In situ spectroelectrochemical probing of CO redox landscape on copper single-crystal surfaces. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, .	7.1	27
13	Inexpensive modeling of quantum dynamics using path integral generalized Langevin equation thermostats. Journal of Chemical Physics, 2020, 152, 124104.	3.0	26
14	In-situ nanospectroscopic imaging of plasmon-induced two-dimensional [4+4]-cycloaddition polymerization on Au(111). Nature Communications, 2021, 12, 4557.	12.8	24
15	Monitoring surface transformations of metal carbodiimide water oxidation catalysts by operando XAS and Raman spectroscopy. Dalton Transactions, 2018, 47, 10759-10766.	3.3	11
16	CO2 adsorption on the pristine and reduced CeO2 (111) surface: Geometries and vibrational spectra by first principles simulations. Journal of Chemical Physics, 2021, 154, 094702.	3.0	11
17	Toward High-level Machine Learning Potential for Water Based on Quantum Fragmentation and Neural Networks. Journal of Physical Chemistry A, 2022, 126, 3926-3936.	2.5	11
18	Efficient Quantum Vibrational Spectroscopy of Water with High-Order Path Integrals: From Bulk to Interfaces. Journal of Physical Chemistry Letters, 2021, 12, 9108-9114.	4.6	9

#	Article	IF	CITATIONS
19	Shallow and deep trap states of solvated electrons in methanol and their formation, electronic excitation, and relaxation dynamics. Chemical Science, 2022, 13, 3837-3844.	7.4	9
20	Nanoscale Chemical Imaging of Coadsorbed Thiolate Self-Assembled Monolayers on Au(111) by Tip-Enhanced Raman Spectroscopy. Analytical Chemistry, 2022, 94, 1645-1653.	6.5	5
21	Effect of the alkyl linker length on the photoisomerization of hydrazone switches on metal surfaces. Materials Today Chemistry, 2022, 24, 100797.	3.5	4
22	Nuclear quantum effects at aqueous metal interfaces captured by molecular dynamics simulations. Current Opinion in Electrochemistry, 2022, 33, 100934.	4.8	2
23	Theoretical Study of NO Dissociation on an Open Flat Ru(101i1) Surface. Journal of Physical Chemistry C, 2019, 123, 5488-5494.	3.1	0