Anton Zilman

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6474280/publications.pdf Version: 2024-02-01

ΔΝΤΟΝ ΖΗ ΜΑΝ

#	Article	IF	CITATIONS
1	Karyopherin enrichment and compensation fortifies the nuclear pore complex against nucleocytoplasmic leakage. Journal of Cell Biology, 2022, 221, .	5.2	19
2	Roles of phenotypic heterogeneity and microenvironment feedback in early tumor development. Physical Review E, 2021, 103, 032407.	2.1	9
3	Pleiotropy enables specific and accurate signaling in the presence of ligand cross talk. Physical Review E, 2021, 103, 042401.	2.1	6
4	Physical modeling of multivalent interactions in the nuclear pore complex. Biophysical Journal, 2021, 120, 1565-1577.	0.5	14
5	Physics of the nuclear pore complex: Theory, modeling and experiment. Physics Reports, 2021, 921, 1-53.	25.6	44
6	Determinants of Ligand Specificity and Functional Plasticity in Type I Interferon Signaling. Frontiers in Immunology, 2021, 12, 748423.	4.8	4
7	Effects of niche overlap on coexistence, fixation and invasion in a population of two interacting species. Royal Society Open Science, 2020, 7, 192181.	2.4	11
8	Different time scales in dynamic systems with multiple outcomes. Journal of Chemical Physics, 2020, 153, 054107.	3.0	3
9	The entry of nanoparticles into solid tumours. Nature Materials, 2020, 19, 566-575.	27.5	1,036
10	Molecular determinants of large cargo transport into the nucleus. ELife, 2020, 9, .	6.0	31
11	The Role of Cohesiveness in the Permeability ofÂtheÂSpatial Assemblies of FG Nucleoporins. Biophysical Journal, 2019, 116, 1204-1215.	0.5	17
12	Physical approaches to receptor sensing and ligand discrimination. Current Opinion in Systems Biology, 2019, 18, 111-121.	2.6	6
13	Effects of cross-linking on partitioning of nanoparticles into a polymer brush: Coarse-grained simulations test simple approximate theories. Journal of Chemical Physics, 2018, 148, 024902.	3.0	11
14	Anomalous viscosity-time behavior of polysaccharide dispersions. Journal of Chemical Physics, 2018, 149, 163320.	3.0	4
15	Aggregation, Phase Separation and Spatial Morphologies of the Assemblies of FG Nucleoporins. Journal of Molecular Biology, 2018, 430, 4730-4740.	4.2	25
16	Molecular Counting with Localization Microscopy: A Bayesian Estimate Based on Fluorophore Statistics. Biophysical Journal, 2017, 112, 1777-1785.	0.5	26
17	Free Energy of Nanoparticle Binding to Multivalent Polymeric Substrates. Journal of Physical Chemistry B, 2017, 121, 6425-6435.	2.6	21
18	Phenotype Determines Nanoparticle Uptake by Human Macrophages from Liver and Blood. ACS Nano, 2017, 11, 2428-2443.	14.6	180

ANTON ZILMAN

#	Article	IF	CITATIONS
19	Protein Transport by the Nuclear Pore Complex: Simple Biophysics of a Complex Biomachine. Biophysical Journal, 2017, 113, 6-14.	0.5	62
20	Investigating molecular crowding within nuclear pores using polarization-PALM. ELife, 2017, 6, .	6.0	14
21	Precise control of polymer coated nanopores by nanoparticle additives: Insights from computational modeling. Journal of Chemical Physics, 2016, 145, .	3.0	17
22	Mechanism of hard-nanomaterial clearance by theÂliver. Nature Materials, 2016, 15, 1212-1221.	27.5	686
23	Simple biophysics underpins collective conformations of the intrinsically disordered proteins of the Nuclear Pore Complex. ELife, 2016, 5, .	6.0	69
24	A Polymer-Brush-Based Nanovalve Controlled by Nanoparticle Additives: Design Principles. Journal of Physical Chemistry B, 2015, 119, 11858-11866.	2.6	26
25	Morphology of Polymer Brushes Infiltrated by Attractive Nanoinclusions of Various Sizes. Langmuir, 2013, 29, 8584-8591.	3.5	39
26	Large cargo transport by nuclear pores: implications for the spatial organization of FG-nucleoporins. EMBO Journal, 2013, 32, 3220-3230.	7.8	80
27	Morphological control of grafted polymer films via attraction to small nanoparticle inclusions. Physical Review E, 2012, 86, 031806.	2.1	42
28	Stochastic Models of Lymphocyte Proliferation and Death. PLoS ONE, 2010, 5, e12775.	2.5	52
29	Enhancement of Transport Selectivity through Nano-Channels by Non-Specific Competition. PLoS Computational Biology, 2010, 6, e1000804.	3.2	57
30	Crowding effects in non-equilibrium transport through nano-channels. Journal of Physics Condensed Matter, 2010, 22, 454130.	1.8	14
31	Artificial nanopores that mimic the transport selectivity of the nuclear pore complex. Nature, 2009, 457, 1023-1027.	27.8	264
32	Effects of Jamming on Nonequilibrium Transport Times in Nanochannels. Physical Review Letters, 2009, 103, 128103.	7.8	34
33	Effects of Multiple Occupancy and Interparticle Interactions on Selective Transport through Narrow Channels: Theory versus Experiment. Biophysical Journal, 2009, 96, 1235-1248.	0.5	57
34	Efficiency, Selectivity, and Robustness of Nucleocytoplasmic Transport. PLoS Computational Biology, 2007, 3, e125.	3.2	95