List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/647375/publications.pdf Version: 2024-02-01

#	Article	lF	CITATIONS
1	Multigenomic modifications in human circulating immune cells in response to consumption of polyphenol-rich extract of yerba mate (<i>llex paraguariensis A. StHil.</i>) are suggestive of cardiometabolic protective effects. British Journal of Nutrition, 2023, 129, 185-205.	1.2	1
2	Circulating (Poly)phenol Metabolites: Neuroprotection in a 3D Cell Model of Parkinson's Disease. Molecular Nutrition and Food Research, 2022, 66, e2100959.	1.5	8
3	Flavanol Consumption in Healthy Men Preserves Integrity of Immunologicalâ€Endothelial Barrier Cell Functions: Nutri(epi)genomic Analysis. Molecular Nutrition and Food Research, 2022, 66, e2100991.	1.5	14
4	HPLC–DAD profiling of a phenolic extract from Moroccan sweet Basil and its application as oxidative stabilizer of sunflower oil. Chemical Papers, 2021, 75, 1907-1917.	1.0	4
5	Brazilian passion fruit as a new healthy food: from its composition to health properties and mechanisms of action. Food and Function, 2021, 12, 11106-11120.	2.1	9
6	Systematic Bioinformatic Analyses of Nutrigenomic Modifications by Polyphenols Associated with Cardiometabolic Health in Humans—Evidence from Targeted Nutrigenomic Studies. Nutrients, 2021, 13, 2326.	1.7	15
7	Molecular Determinants of the Cardiometabolic Improvements of Dietary Flavanols Identified by an Integrative Analysis of Nutrigenomic Data from a Systematic Review of Animal Studies. Molecular Nutrition and Food Research, 2021, 65, e2100227.	1.5	9
8	Nutrigenomic modification induced by anthocyanin-rich bilberry extract in the hippocampus of ApoE-/- mice. Journal of Functional Foods, 2021, 85, 104609.	1.6	8
9	Effect of probiotic, prebiotic, and synbiotic on the gut microbiota of autistic children using an in vitro gut microbiome model. Food Research International, 2021, 149, 110657.	2.9	22
10	Inhibition of Soluble Epoxide Hydrolase Is Protective against the Multiomic Effects of a High Glycemic Diet on Brain Microvascular Inflammation and Cognitive Dysfunction. Nutrients, 2021, 13, 3913.	1.7	14
11	Evaluating the role of orange juice, HESPERidin in vascular HEALTH benefits (HESPER-HEALTH study): protocol for a randomised controlled trial. BMJ Open, 2021, 11, e053321.	0.8	4
12	Anthocyanin-rich bilberry extract exerts a complex nutrigenomic effect in hippocampus of ApoE-/- mice. Free Radical Biology and Medicine, 2021, 177, S89.	1.3	1
13	Polyphenols in human nutrition: from the <i>in vitro</i> antioxidant capacity to the beneficial effects on cardiometabolic health and related inter-individual variability – an overview and perspective. British Journal of Nutrition, 2020, 123, 241-254.	1.2	65
14	(â^')-Epicatechin metabolites promote vascular health through epigenetic reprogramming of endothelial-immune cell signaling and reversing systemic low-grade inflammation. Biochemical Pharmacology, 2020, 173, 113699.	2.0	29
15	Impact of Epicatechin on the Procoagulant Activities of Microparticles. Nutrients, 2020, 12, 2935.	1.7	6
16	Sex-Dependent Molecular Mechanisms of Lipotoxic Injury in Brain Microvasculature: Implications for Dementia. International Journal of Molecular Sciences, 2020, 21, 8146.	1.8	7
17	Citrus flavanone metabolites protect pancreatic-β cells under oxidative stress induced by cholesterol. Food and Function, 2020, 11, 8612-8624.	2.1	15
18	Effects of the apple matrix on the postprandial bioavailability of flavan-3-ols and nutrigenomic response of apple polyphenols in minipigs challenged with a high fat meal. Food and Function, 2020, 11, 5077-5090.	2.1	19

#	Article	IF	CITATIONS
19	In silico analysis of antidiabetic potential of phenolic compounds from blue corn (Zea mays L.) and black bean (Phaseolus vulgaris L.). Heliyon, 2020, 6, e03632.	1.4	42
20	Lipotoxic Injury Differentially Regulates Brain Microvascular Gene Expression in Male Mice. Nutrients, 2020, 12, 1771.	1.7	12
21	Citrus Flavanones Upregulate Thyrotroph Sirt1 and Differently Affect Thyroid Nrf2 Expressions in Old-Aged Wistar Rats. Journal of Agricultural and Food Chemistry, 2020, 68, 8242-8254.	2.4	15
22	Microbiota modulation and effects on metabolic biomarkers by orange juice: a controlled clinical trial. Food and Function, 2020, 11, 1599-1610.	2.1	48
23	Why interindividual variation in response to consumption of plant food bioactives matters for future personalised nutrition. Proceedings of the Nutrition Society, 2020, 79, 225-235.	0.4	36
24	Acute Effects of the Consumption of Passiflora setacea Juice on Metabolic Risk Factors and Gene Expression Profile in Humans. Nutrients, 2020, 12, 1104.	1.7	9
25	Alterations of aorta intima and media transcriptome in swine fed high-fat diet over 1-year follow-up period and of the switch to normal diet. Nutrition, Metabolism and Cardiovascular Diseases, 2020, 30, 1201-1215.	1.1	3
26	Systematic bioinformatic analysis of nutrigenomic data of flavanols in cell models of cardiometabolic disease. Food and Function, 2020, 11, 5040-5064.	2.1	13
27	Phenolic-Rich Extract from Almond (Prunus dulcis) Hulls Improves Lipid Metabolism in Triton WR-1339 and High-Fat Diet-Induced Hyperlipidemic Mice and Prevents Lipoprotein Oxidation: A Comparison with Fenofibrate and Butylated Hydroxyanisole. Preventive Nutrition and Food Science, 2020, 25, 254-262.	0.7	6
28	Targeting the delivery of dietary plant bioactives to those who would benefit most: from science to practical applications. European Journal of Nutrition, 2019, 58, 65-73.	1.8	14
29	Factors influencing the cardiometabolic response to (poly)phenols and phytosterols: a review of the COST Action POSITIVe activities. European Journal of Nutrition, 2019, 58, 37-47.	1.8	39
30	Anthocyanins: From Sources and Bioavailability to Cardiovascular-Health Benefits and Molecular Mechanisms of Action. Journal of Agricultural and Food Chemistry, 2019, 67, 1771-1783.	2.4	176
31	Nutritional Regulation of Mammary miRNome: Implications for Human Studies. , 2019, , 1495-1511.		0
32	Circulating Anthocyanin Metabolites Mediate Vascular Benefits of Blueberries: Insights From Randomized Controlled Trials, Metabolomics, and Nutrigenomics. Journals of Gerontology - Series A Biological Sciences and Medical Sciences, 2019, 74, 967-976.	1.7	93
33	Epicatechin influences primary hemostasis, coagulation and fibrinolysis. Food and Function, 2019, 10, 7291-7298.	2.1	24
34	The Western Diet Regulates Hippocampal Microvascular Gene Expression: An Integrated Genomic Analyses in Female Mice. Scientific Reports, 2019, 9, 19058.	1.6	20
35	Chronic consumption of a western diet modifies the DNA methylation profile in the frontal cortex of mice. Food and Function, 2018, 9, 1187-1198.	2.1	5
36	Effects of anthocyanins and their gut metabolites on adenosine diphosphate-induced platelet activation and their aggregation with monocytes and neutrophils. Archives of Biochemistry and Biophysics, 2018, 645, 34-41.	1.4	24

#	Article	IF	CITATIONS
37	Substantial Variability Across Individuals in the Vascular and Nutrigenomic Response to an Acute Intake of Curcumin: A Randomized Controlled Trial. Molecular Nutrition and Food Research, 2018, 62, 1700418.	1.5	35
38	Poor cognitive ageing: Vulnerabilities, mechanisms and the impact of nutritional interventions. Ageing Research Reviews, 2018, 42, 40-55.	5.0	136
39	A systems biology network analysis of nutri(epi)genomic changes in endothelial cells exposed to epicatechin metabolites. Scientific Reports, 2018, 8, 15487.	1.6	31
40	Anthocyanins and their gut metabolites attenuate monocyte adhesion and transendothelial migration through nutrigenomic mechanisms regulating endothelial cell permeability. Free Radical Biology and Medicine, 2018, 124, 364-379.	1.3	40
41	Interindividual Variability in Biomarkers of Cardiometabolic Health after Consumption of Major Plant-Food Bioactive Compounds and the Determinants Involved. Advances in Nutrition, 2017, 8, 558-570.	2.9	79
42	Curcumin modulates endothelial permeability and monocyte transendothelial migration by affecting endothelial cell dynamics. Free Radical Biology and Medicine, 2017, 112, 109-120.	1.3	34
43	Addressing the interâ€individual variation in response to consumption of plant food bioactives: Towards a better understanding of their role in healthy aging and cardiometabolic risk reduction. Molecular Nutrition and Food Research, 2017, 61, 1600557.	1.5	179
44	Diosgenin-caused changes of the adrenal gland histological parameters in a rat model of the menopause. Acta Histochemica, 2017, 119, 48-56.	0.9	8
45	Impact of Flavonols on Cardiometabolic Biomarkers: A Metaâ€Analysis of Randomized Controlled Human Trials to Explore the Role of Interâ€Individual Variability. Nutrients, 2017, 9, 117.	1.7	111
46	An update on the role of nutrigenomic modulations in mediating the cardiovascular protective effect of fruit polyphenols. Food and Function, 2016, 7, 3656-3676.	2.1	27
47	Citrus flavanones naringenin and hesperetin improve antioxidant status and membrane lipid compositions in the liver of old-aged Wistar rats. Experimental Gerontology, 2016, 84, 49-60.	1.2	62
48	Anthocyanins and their gut metabolites reduce the adhesion of monocyte to TNFα-activated endothelial cells at physiologically relevant concentrations. Archives of Biochemistry and Biophysics, 2016, 599, 51-59.	1.4	54
49	Positive effects of naringenin on near-surface membrane fluidity in human erythrocytes. Acta Physiologica Hungarica, 2015, 102, 131-136.	0.9	10
50	Dietary Polyphenols and Their Effects on Cell Biochemistry and Pathophysiology 2014. Oxidative Medicine and Cellular Longevity, 2015, 2015, 1-2.	1.9	11
51	Flavanones protect from arterial stiffness in postmenopausal women consuming grapefruit juice for 6 mo: a randomized, controlled, crossover trial. American Journal of Clinical Nutrition, 2015, 102, 66-74.	2.2	72
52	Epigenetic control of cardiovascular health by nutritional polyphenols involves multiple chromatin-modifying writer-reader-eraser proteins. Current Topics in Medicinal Chemistry, 2015, 16, 788-806.	1.0	24
53	Vascular Protective Effects of Fruit Polyphenols. , 2014, , 875-893.		6
54	Flavanol metabolites reduce monocyte adhesion to endothelial cells through modulation of expression of genes via p38â€MAPK and p65â€Nfâ€kB pathways. Molecular Nutrition and Food Research, 2014,	1.5	59

58, 1016-1027.

#	Article	IF	CITATIONS
55	Nutritional aspects of metabolic inflammation in relation to health—insights from transcriptomic biomarkers in <scp>PBMC</scp> of fatty acids and polyphenols. Molecular Nutrition and Food Research, 2014, 58, 1708-1720.	1.5	55
56	Dietary Flavanols Modulate the Transcription of Genes Associated with Cardiovascular Pathology without Changes in Their DNA Methylation State. PLoS ONE, 2014, 9, e95527.	1.1	49
57	miRNA as molecular target of polyphenols underlying their biological effects. Free Radical Biology and Medicine, 2013, 64, 40-51.	1.3	184
58	Flavanone metabolites decrease monocyte adhesion to TNF-α-activated endothelial cells by modulating expression of atherosclerosis-related genes. British Journal of Nutrition, 2013, 110, 587-598.	1.2	67
59	Insulin immuno-neutralization in fed chickens: effects on liver and muscle transcriptome. Physiological Genomics, 2012, 44, 283-292.	1.0	14
60	Citrus Flavanones: What Is Their Role in Cardiovascular Protection?. Journal of Agricultural and Food Chemistry, 2012, 60, 8809-8822.	2.4	175
61	Bilberry anthocyanin-rich extract alters expression of genes related to atherosclerosis development in aorta of apo E-deficient mice. Nutrition, Metabolism and Cardiovascular Diseases, 2012, 22, 72-80.	1.1	87
62	Naringin at a nutritional dose modulates expression of genes related to lipid metabolism and inflammation in liver of mice fed a high-fat diet. Nutrition and Aging (Amsterdam, Netherlands), 2012, 1, 113-123.	0.3	4
63	Dietary curcumin inhibits atherosclerosis by affecting the expression of genes involved in leukocyte adhesion and transendothelial migration. Molecular Nutrition and Food Research, 2012, 56, 1270-1281.	1.5	78
64	Naringin, the major grapefruit flavonoid, specifically affects atherosclerosis development in diet-induced hypercholesterolemia in mice. Journal of Nutritional Biochemistry, 2012, 23, 469-477.	1.9	125
65	Modulation of miRNA Expression by Dietary Polyphenols in apoE Deficient Mice: A New Mechanism of the Action of Polyphenols. PLoS ONE, 2012, 7, e29837.	1.1	147
66	Hesperidin contributes to the vascular protective effects of orange juice: a randomized crossover study in healthy volunteers. American Journal of Clinical Nutrition, 2011, 93, 73-80.	2.2	367
67	Hesperidin Displays Relevant Role in the Nutrigenomic Effect of Orange Juice on Blood Leukocytes in Human Volunteers: A Randomized Controlled Cross-Over Study. PLoS ONE, 2011, 6, e26669.	1.1	98
68	Modulation of gene expression in endothelial cells by hyperlipaemic postprandial serum from healthy volunteers. Genes and Nutrition, 2010, 5, 263-274.	1.2	10
69	Nutrigenomic analysis of the protective effects of bilberry anthocyanin-rich extract in apo E-deficient mice. Genes and Nutrition, 2010, 5, 343-353.	1.2	54
70	The regular consumption of a polyphenol-rich apple does not influence endothelial function: a randomised double-blind trial in hypercholesterolemic adults. European Journal of Clinical Nutrition, 2010, 64, 1158-1165.	1.3	55
71	Amino acid limitation regulates the expression of genes involved in several specific biological processes through GCN2â€dependent and GCN2â€independent pathways. FEBS Journal, 2009, 276, 707-718.	2.2	111
72	Atheroprotective Effects of Bilberry Extracts in Apo E-Deficient Mice. Journal of Agricultural and Food Chemistry, 2009, 57, 11106-11111.	2.4	36

DRAGAN MILENKOVIC

#	Article	IF	CITATIONS
73	Catechin reduces atherosclerotic lesion development in apo E-deficient mice: A transcriptomic study. Atherosclerosis, 2009, 204, e21-e27.	0.4	92
74	Apple Polyphenols and Fibers Attenuate Atherosclerosis in Apolipoprotein E-Deficient Mice. Journal of Agricultural and Food Chemistry, 2008, 56, 5558-5563.	2.4	55
75	Differential expression of sarcoplasmic proteins in four heterogeneous ovine skeletal muscles. Proteomics, 2007, 7, 271-280.	1.3	41
76	Proteomic analysis of ovine muscle hypertrophy1. Journal of Animal Science, 2006, 84, 3266-3276.	0.2	78
77	Polymorphic Polymorphic MicroRNA-Target Interactions: A Novel Source of Phenotypic Variation. Cold Spring Harbor Symposia on Quantitative Biology, 2006, 71, 343-350.	2.0	46
78	A mutation creating a potential illegitimate microRNA target site in the myostatin gene affects muscularity in sheep. Nature Genetics, 2006, 38, 813-818.	9.4	1,125
79	Characterization and localization of 17 microsatellites derived from BACs in the horse. Animal Genetics, 2005, 36, 164-166.	0.6	2
80	cDNA sequence of the horse (Equus caballus)LAMA3gene and characterization of two intronic SNP markers. DNA Sequence, 2005, 16, 468-473.	0.7	1
81	Genetic mapping of GBE1 and its association with glycogen storage disease IV in American Quarter horses. Cytogenetic and Genome Research, 2003, 102, 201-206.	0.6	23
82	Cytogenetic localization of 136 genes in the horse: comparative mapping with the human genome. Mammalian Genome, 2002, 13, 524-534.	1.0	82