Philippe Lebaron

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6472981/publications.pdf

Version: 2024-02-01

60 papers

3,008 citations

186265 28 h-index 53 g-index

63 all docs 63 docs citations

63 times ranked 3085 citing authors

#	Article	IF	CITATIONS
1	Current and future chemical treatments to fight biodeterioration of outdoor building materials and associated biofilms: Moving away from ecotoxic and towards efficient, sustainable solutions. Science of the Total Environment, 2022, 802, 149846.	8.0	33
2	Oxybenzone contamination from sunscreen pollution and its ecological threat to Hanauma Bay, Oahu, Hawaii, U.S.A Chemosphere, 2022, 291, 132880.	8.2	25
3	Transfer of 7 Organic UV Filters from Sediment to the Ragworm Hediste diversicolor: Bioaccumulation of Benzophenone-3 and Further Proof of Octocrylene Metabolism. Pollutants, 2022, 2, 23-31.	2.1	7
4	Impact of Egg Exposure to UV Filter-Spiked Sediment on the Survival, Hatching Success, Cardiac Frequency, and Metabolic Scope of Zebrafish Embryos. Oceans, 2022, 3, 84-93.	1.3	1
5	Evaluation of the degradation capacity of WWTP sludge enrichment cultures towards several organic UV filters and the isolation of octocrylene-degrading microorganisms. Science of the Total Environment, 2022, 826, 154013.	8.0	3
6	<scp>UV</scp> filters and their impact on marine life: state of the science, data gaps, and next steps. Journal of the European Academy of Dermatology and Venereology, 2022, 36, 22-28.	2.4	7
7	Efficient degradation of the organic UV filter benzophenone-3 by Sphingomonas wittichii strain BP14P isolated from WWTP sludge. Science of the Total Environment, 2021, 758, 143674.	8.0	24
8	Exposure to four chemical UV filters through contaminated sediment: impact on survival, hatching success, cardiac frequency, and aerobic metabolic scope in embryo-larval stage of zebrafish. Environmental Science and Pollution Research, 2021, 28, 29412-29420.	5. 3	9
9	Methyl Potassium Siliconate and Siloxane Inhibit the Formation of Multispecies Biofilms on Ceramic Roof Tiles: Efficiency and Comparison of Two Common Water Repellents. Microorganisms, 2021, 9, 394.	3.6	5
10	Benzophenone Accumulates over Time from the Degradation of Octocrylene in Commercial Sunscreen Products. Chemical Research in Toxicology, 2021, 34, 1046-1054.	3.3	52
11	Optimization method for quantification of sunscreen organic ultraviolet filters in coastal sands. Journal of Separation Science, 2021, 44, 3338-3347.	2.5	4
12	Response to the Letter to the Editor by Dr. Christian Surber. Chemical Research in Toxicology, 2021, 34, 1938-1943.	3.3	2
13	Diversity and activities of pioneer bacteria, algae, and fungi colonizing ceramic roof tiles during the first year of outdoor exposure. International Biodeterioration and Biodegradation, 2021, 162, 105230.	3.9	10
14	Shedding light on the bacterial resistance to toxic UV filters: a comparative genomic study. PeerJ, 2021, 9, e12278.	2.0	2
15	Diel Protein Regulation of Marine Picoplanktonic Communities Assessed by Metaproteomics. Microorganisms, 2021, 9, 2621.	3.6	2
16	Inâ€depth prospection of Avène Thermal Spring Water reveals an uncommon and stable microbial community. Journal of the European Academy of Dermatology and Venereology, 2020, 34, 8-14.	2.4	8
17	Skin Microbiome and its Interplay with the Environment. American Journal of Clinical Dermatology, 2020, 21, 4-11.	6.7	54
18	Bioaccumulation and Toxicological Effects of UV-Filters on Marine Species. Handbook of Environmental Chemistry, 2020, , 85-130.	0.4	18

#	Article	IF	Citations
19	Toxicity of UV filters on marine bacteria: Combined effects with damaging solar radiation. Science of the Total Environment, 2020, 722, 137803.	8.0	32
20	A unique approach to monitor stress in coral exposed to emerging pollutants. Scientific Reports, 2020, 10, 9601.	3.3	45
21	Effect of 10 UV Filters on the Brine Shrimp Artemia salina and the Marine Microalga Tetraselmis sp Toxics, 2020, 8, 29.	3.7	30
22	High bacterial diversity in pioneer biofilms colonizing ceramic roof tiles. International Biodeterioration and Biodegradation, 2019, 144, 104745.	3.9	17
23	Occurrence and Environmental Distribution of 5 UV Filters During the Summer Season in Different Water Bodies. Water, Air, and Soil Pollution, 2019, 230, 1.	2.4	41
24	Deciphering the Functioning of Microbial Communities: Shedding Light on the Critical Steps in Metaproteomics. Frontiers in Microbiology, 2019, 10, 2395.	3.5	16
25	Metabolomics Reveal That Octocrylene Accumulates in <i>Pocillopora damicornis</i> Tissues as Fatty Acid Conjugates and Triggers Coral Cell Mitochondrial Dysfunction. Analytical Chemistry, 2019, 91, 990-995.	6.5	62
26	Characterization of N-Acyl Homoserine Lactones in Vibrio tasmaniensis LGP32 by a Biosensor-Based UHPLC-HRMS/MS Method. Sensors, 2017, 17, 906.	3.8	21
27	Methods for Studying Microorganisms in the Environment. , 2015, , 757-829.		2
28	Environmental and Human Pathogenic Microorganisms. , 2015, , 619-658.		1
29	Pleionea mediterranea gen. nov., sp. nov., a gammaproteobacterium isolated from coastal seawater. International Journal of Systematic and Evolutionary Microbiology, 2013, 63, 2700-2705.	1.7	28
30	Balance between beneficial microflora and Staphylococcus aureus colonisation: in vivo evaluation in patients with atopic dermatitis during hydrotherapy. European Journal of Dermatology, 2013, 23, 786-794.	0.6	19
31	Shotgun Redox Proteomics: Identification and Quantitation of Carbonylated Proteins in the UVB-Resistant Marine Bacterium, Photobacterium angustum S14. PLoS ONE, 2013, 8, e68112.	2.5	27
32	Total and Viable Legionella pneumophila Cells in Hot and Natural Waters as Measured by Immunofluorescence-Based Assays and Solid-Phase Cytometry. Applied and Environmental Microbiology, 2011, 77, 6225-6232.	3.1	16
33	Rapid detection of Escherichia coli in waters using fluorescent in situ hybridization, direct viable counting and solid phase cytometry. Journal of Applied Microbiology, 2010, 109, 1253-1264.	3.1	22
34	Rapid enumeration of <i>Escherichia coli </i> in marine bathing waters: potential interference of nontarget bacteria. Journal of Applied Microbiology, 2009, 107, 2054-2062.	3.1	18
35	Melitea salexigens gen. nov., sp. nov., a gammaproteobacterium from the Mediterranean Sea. International Journal of Systematic and Evolutionary Microbiology, 2008, 58, 2479-2483.	1.7	25
36	Haliea salexigens gen. nov., sp. nov., a member of the Gammaproteobacteria from the Mediterranean Sea. International Journal of Systematic and Evolutionary Microbiology, 2008, 58, 1233-1237.	1.7	56

3

#	Article	IF	Citations
37	Biochemical characteristics and bacterial community structure of the sea surface microlayer in the South Pacific Ocean. Biogeosciences, 2008, 5, 693-705.	3.3	80
38	Diel and Seasonal Variations in Abundance, Activity, and Community Structure of Particle-Attached and Free-Living Bacteria in NW Mediterranean Sea. Microbial Ecology, 2007, 54, 217-231.	2.8	157
39	Succession of cellular states in a Salmonella typhimurium population during starvation in artificial seawater microcosms. FEMS Microbiology Ecology, 2006, 22, 65-76.	2.7	90
40	Balneola vulgaris gen. nov., sp. nov., a member of the phylum Bacteroidetes from the north-western Mediterranean Sea. International Journal of Systematic and Evolutionary Microbiology, 2006, 56, 1883-1887.	1.7	59
41	Enhanced heterotrophic activity in the surface microlayer of the Mediterranean Sea. Aquatic Microbial Ecology, 2005, 39, 293-302.	1.8	71
42	A survey on bacteria inhabiting the sea surface microlayer of coastal ecosystems. FEMS Microbiology Ecology, 2005, 54, 269-280.	2.7	133
43	An operational method for the real-time monitoring of E. coli numbers in bathing waters. Marine Pollution Bulletin, 2005, 50, 652-659.	5.0	43
44	Resistance of Marine Bacterioneuston to Solar Radiation. Applied and Environmental Microbiology, 2005, 71, 5282-5289.	3.1	137
45	Rapid Detection and Enumeration of Legionella pneumophila in Hot Water Systems by Solid-Phase Cytometry. Applied and Environmental Microbiology, 2004, 70, 1651-1657.	3.1	43
46	Comparison of samplers for the biological characterization of the sea surface microlayer. Limnology and Oceanography: Methods, 2004, 2, 213-225.	2.0	101
47	A sensitive and rapid method to determine the viability of freeze-dried bacterial cells. Letters in Applied Microbiology, 2003, 36, 412-417.	2.2	15
48	Occurrence of Salmonella spp. and Cryptosporidium spp. in a French coastal watershed: relationship with fecal indicators. FEMS Microbiology Letters, 2003, 218, 203-209.	1.8	7
49	Rapid Detection and Enumeration of Naegleria fowleri in Surface Waters by Solid-Phase Cytometry. Applied and Environmental Microbiology, 2002, 68, 3102-3107.	3.1	31
50	Are the actively respiring cells (CTC+) those responsible for bacterial production in aquatic environments?. FEMS Microbiology Ecology, 2001, 35, 171-179.	2.7	57
51	Does the High Nucleic Acid Content of Individual Bacterial Cells Allow Us To Discriminate between Active Cells and Inactive Cells in Aquatic Systems?. Applied and Environmental Microbiology, 2001, 67, 1775-1782.	3.1	351
52	Are the actively respiring cells (CTC+) those responsible for bacterial production in aquatic environments?. FEMS Microbiology Ecology, 2001, 35, 171-179.	2.7	5
53	Evaluation of ChemChrome V6 for bacterial viability assessment in waters. Journal of Applied Microbiology, 2000, 89, 370-380.	3.1	46
54	Use of fluorescent probes to assess physiological functions of bacteriaat single-cell level. Microbes and Infection, 2000, 2, 1523-1535.	1.9	330

#	Article	IF	CITATION
55	Relationships among Bacterial Cell Size, Productivity, and Genetic Diversity in Aquatic Environments using Cell Sorting and Flow Cytometry. Microbial Ecology, 2000, 40, 148-158.	2.8	58
56	Marine Bacterial Isolates Display Diverse Responses to UV-B Radiation. Applied and Environmental Microbiology, 1999, 65, 3820-3827.	3.1	159
57	Effectiveness of CSE to counterstain particles and dead bacterial cells with permeabilised membranes: application to viability assessment in waters. FEMS Microbiology Letters, 1999, 178, 219-226.	1.8	33
58	Effectiveness of SYTOX Green Stain for Bacterial Viability Assessment. Applied and Environmental Microbiology, 1998, 64, 2697-2700.	3.1	152
59	Changes in Cellular States of the Marine Bacterium Deleya aquamarina under Starvation Conditions. Applied and Environmental Microbiology, 1997, 63, 2686-2694.	3.1	10
60	Ecological implications of an improved direct viable count method for aquatic bacteria. Applied and Environmental Microbiology, 1997, 63, 3643-3647.	3.1	84