Masashi Misawa

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6472642/publications.pdf

Version: 2024-02-01

107	3,746	29 h-index	57
papers	citations		g-index
109	109	109	2388
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Real-Time Use of Artificial Intelligence in Identification of Diminutive Polyps During Colonoscopy. Annals of Internal Medicine, 2018, 169, 357.	2.0	391
2	Artificial Intelligence-Assisted Polyp Detection for Colonoscopy: Initial Experience. Gastroenterology, 2018, 154, 2027-2029.e3.	0.6	281
3	Artificial Intelligence-assisted System Improves Endoscopic Identification of Colorectal Neoplasms. Clinical Gastroenterology and Hepatology, 2020, 18, 1874-1881.e2.	2.4	167
4	Fully automated diagnostic system with artificial intelligence using endocytoscopy to identify the presence of histologic inflammation associated with ulcerative colitis (with video). Gastrointestinal Endoscopy, 2019, 89, 408-415.	0.5	165
5	Characterization of Colorectal Lesions Using a Computer-Aided Diagnostic System for Narrow-Band Imaging Endocytoscopy. Gastroenterology, 2016, 150, 1531-1532.e3.	0.6	158
6	Artificial intelligence for polyp detection during colonoscopy: a systematic review and meta-analysis. Endoscopy, 2021, 53, 277-284.	1.0	139
7	Novel computer-aided diagnostic system for colorectal lesions by using endocytoscopy (with videos). Gastrointestinal Endoscopy, 2015, 81, 621-629.	0.5	136
8	Computer-aided diagnosis for colonoscopy. Endoscopy, 2017, 49, 813-819.	1.0	130
9	Development of a computer-aided detection system for colonoscopy and a publicly accessible large colonoscopy video database (with video). Gastrointestinal Endoscopy, 2021, 93, 960-967.e3.	0.5	111
10	Accuracy of diagnosing invasive colorectal cancer using computer-aided endocytoscopy. Endoscopy, 2017, 49, 798-802.	1.0	109
11	Artificial intelligence and colonoscopy: Current status and future perspectives. Digestive Endoscopy, 2019, 31, 363-371.	1.3	108
12	Quality assurance of computer-aided detection and diagnosis in colonoscopy. Gastrointestinal Endoscopy, 2019, 90, 55-63.	0.5	104
13	Artificial intelligence may help in predicting the need for additional surgery after endoscopic resection of T1 colorectal cancer. Endoscopy, 2018, 50, 230-240.	1.0	100
14	Artificial intelligence and upper gastrointestinal endoscopy: Current status and future perspective. Digestive Endoscopy, 2019, 31, 378-388.	1.3	100
15	Artificial Intelligence System to Determine Risk of T1 Colorectal Cancer Metastasis to Lymph Node. Gastroenterology, 2021, 160, 1075-1084.e2.	0.6	99
16	Impact of an automated system for endocytoscopic diagnosis of small colorectal lesions: an international web-based study. Endoscopy, 2016, 48, 1110-1118.	1.0	98
17	Cost savings in colonoscopy with artificial intelligence-aided polyp diagnosis: an add-on analysis of a clinical trial (withÂvideo). Gastrointestinal Endoscopy, 2020, 92, 905-911.e1.	0.5	95
18	Management of T1 colorectal cancers after endoscopic treatment based on the risk stratification of lymph node metastasis. Journal of Gastroenterology and Hepatology (Australia), 2016, 31, 1126-1132.	1.4	73

#	Article	IF	Citations
19	Colonoscopy screening and surveillance guidelines. Digestive Endoscopy, 2021, 33, 486-519.	1.3	67
20	Accuracy of computer-aided diagnosis based on narrow-band imaging endocytoscopy for diagnosing colorectal lesions: comparison with experts. International Journal of Computer Assisted Radiology and Surgery, 2017, 12, 757-766.	1.7	65
21	Simultaneous detection and characterization of diminutive polypsÂwithÂthe use of artificial intelligence during colonoscopy. VideoGIE, 2019, 4, 7-10.	0.3	51
22	Practical problems of measuring depth of submucosal invasion in T1 colorectal carcinomas. International Journal of Colorectal Disease, 2016, 31, 137-146.	1.0	45
23	Endocytoscopic microvasculature evaluation is a reliable new diagnostic method for colorectal lesions (with video). Gastrointestinal Endoscopy, 2015, 82, 912-923.	0.5	41
24	Double staining with crystal violet and methylene blue is appropriate for colonic endocytoscopy: <scp>A</scp> n <scp><i>in vivo</i></scp> prospective pilot study. Digestive Endoscopy, 2014, 26, 403-408.	1.3	40
25	Artificial intelligence in colonoscopy ―Now on the market. What's next?. Journal of Gastroenterology and Hepatology (Australia), 2021, 36, 7-11.	1.4	40
26	Endocytoscopy can provide additional diagnostic ability to magnifying chromoendoscopy for colorectal neoplasms. Journal of Gastroenterology and Hepatology (Australia), 2014, 29, 83-90.	1.4	39
27	Management and risk factor of stenosis after endoscopic submucosal dissection for colorectal neoplasms. Gastrointestinal Endoscopy, 2017, 86, 358-369.	0.5	39
28	Real-Time Artificial Intelligence–Based Optical Diagnosis of Neoplastic Polyps during Colonoscopy. , 2022, 1, .		36
29	Efficiency of endocytoscopy in differentiating types of serrated polyps. Gastrointestinal Endoscopy, 2014, 79, 648-656.	0.5	35
30	Establishing key research questions for the implementation of artificial intelligence in colonoscopy: a modified Delphi method. Endoscopy, 2021, 53, 893-901.	1.0	35
31	Endocytoscopic narrow-band imaging efficiency for evaluation of inflammatory activity in ulcerative colitis. World Journal of Gastroenterology, 2015, 21, 2108-2115.	1.4	32
32	Current problems and perspectives of pathological risk factors for lymph node metastasis in T1 colorectal cancer: Systematic review. Digestive Endoscopy, 2022, 34, 901-912.	1.3	26
33	Current status and future perspective on artificial intelligence for lower endoscopy. Digestive Endoscopy, 2021, 33, 273-284.	1.3	25
34	Can artificial intelligence help to detect dysplasia in patients with ulcerative colitis? Endoscopy, 2021, 53, E273-E274.	1.0	25
35	Narrow band imaging efficiency in evaluation of mucosal healing/relapse of ulcerative colitis. Endoscopy International Open, 2018, 06, E518-E523.	0.9	24
36	Evaluation in real-time use of artificial intelligence during colonoscopy to predict relapse of ulcerative colitis: aÂprospective study. Gastrointestinal Endoscopy, 2022, 95, 747-756.e2.	0.5	23

#	Article	IF	CITATIONS
37	Risk factors of recurrence in T1 colorectal cancers treated by endoscopic resection alone or surgical resection with lymph node dissection. International Journal of Colorectal Disease, 2018, 33, 1029-1038.	1.0	22
38	The role of microvessel density, lymph node metastasis, and tumor size as prognostic factors of distant metastasis in colorectal cancer. Oncology Letters, 2017, 13, 4327-4333.	0.8	21
39	Left-sided location is a risk factor for lymph node metastasis of T1 colorectal cancer: a single-center retrospective study. International Journal of Colorectal Disease, 2020, 35, 1911-1919.	1.0	20
40	Risk Stratification of T1 Colorectal Cancer Metastasis to Lymph Nodes: Current Status and Perspective. Gut and Liver, 2021, 15, 818-826.	1.4	20
41	Impact of the clinical use of artificial intelligence–assisted neoplasia detection for colonoscopy: a large-scale prospective, propensity score–matched study (with video). Gastrointestinal Endoscopy, 2022, 95, 155-163.	0.5	19
42	Diagnostic performance of endocytoscopy for evaluating the invasion depth of different morphological types of colorectal tumors. Digestive Endoscopy, 2015, 27, 755-762.	1.3	18
43	Analysis of Risk Factors for Colonic Diverticular Bleeding: A Matched Case-Control Study. Gut and Liver, 2016, 10, 244.	1.4	18
44	Patient gender as a factor associated with lymph node metastasis in T1 colorectal cancer: A systematic review and meta-analysis. Molecular and Clinical Oncology, 2017, 6, 517-524.	0.4	16
45	Classification of nuclear morphology in endocytoscopy of colorectal neoplasms. Gastrointestinal Endoscopy, 2017, 85, 628-638.	0.5	15
46	Treatment policy for colonic laterally spreading tumors based on each clinicopathologic feature of 4 subtypes: actual status of pseudo-depressed type. Gastrointestinal Endoscopy, 2020, 92, 1083-1094.e6.	0.5	15
47	Comparative clinicopathological characteristics of colon and rectal T1 carcinoma. Oncology Letters, 2017, 13, 805-810.	0.8	14
48	Artificial intelligence-assisted colonic endocytoscopy for cancer recognition: a multicenter study. Endoscopy International Open, 2021, 09, E1004-E1011.	0.9	14
49	Comprehensive Diagnostic Performance of Real-Time Characterization of Colorectal Lesions Using an Artificial Intelligence–Assisted System: A Prospective Study. Gastroenterology, 2022, 163, 323-325.e3.	0.6	14
50	â€~Head Invasion' Is Not a Metastasis-Free Condition in Pedunculated T1 Colorectal Carcinomas Based on the Precise Histopathological Assessment. Digestion, 2016, 94, 166-175.	1.2	13
51	Endocytoscopy for the differential diagnosis of colorectal low-grade adenoma: a novel possibility for the "resect and discard―strategy. Gastrointestinal Endoscopy, 2020, 91, 676-683.	0.5	13
52	Beyond complete endoscopic healing: goblet appearance using an endocytoscope to predict future sustained clinical remission in ulcerative colitis. Digestive Endoscopy, 2021, , .	1.3	13
53	Combined endocytoscopy with pit pattern diagnosis in ulcerative colitisâ€essociated neoplasia: Pilot study. Digestive Endoscopy, 2021, , .	1.3	12
54	Endocytoscopic intramucosal capillary network changes and crypt architecture abnormalities can predict relapse in patients with an ulcerative colitis Mayo endoscopic score of 1. Digestive Endoscopy, 2020, 32, 1082-1091.	1.3	11

#	Article	IF	CITATIONS
55	Evaluation of microvascular findings of deeply invasive colorectal cancer by endocytoscopy with narrow-band imaging. Endoscopy International Open, 2016, 04, E1280-E1285.	0.9	10
56	Endoscopic diagnosis and treatment of ulcerative colitisâ€associated neoplasia. Digestive Endoscopy, 2019, 31, 26-30.	1.3	10
57	Diagnosis of sessile serrated adenomas/polyps using endocytoscopy (with videos). Digestive Endoscopy, 2016, 28, 43-48.	1.3	9
58	A novel ability of endocytoscopy to diagnose histological grade of differentiation in T1 colorectal carcinomas. Endoscopy, 2017, 50, 69-74.	1.0	9
59	Binary polyp-size classification based on deep-learned spatial information. International Journal of Computer Assisted Radiology and Surgery, 2021, 16, 1817-1828.	1.7	9
60	Clinical Efficacy of Endocytoscopy for Gastrointestinal Endoscopy. Clinical Endoscopy, 2021, 54, 455-463.	0.6	8
61	Novel "resect and analysis―approach for T2 colorectal cancer with use of artificial intelligence. Gastrointestinal Endoscopy, 2022, 96, 665-672.e1.	0.5	8
62	Magnifying narrow-band imaging of surface patterns for diagnosing colorectal cancer. Oncology Reports, 2013, 30, 350-356.	1.2	7
63	The concept of  Semi-clean colon' using the pit pattern classification system has the potential to be acceptable in combination with a <3-year surveillance colonoscopy. Oncology Letters, 2017, 14, 2735-2742.	0.8	7
64	Artificial Intelligence for Colorectal Polyp Detection and Characterization. Current Treatment Options in Gastroenterology, 2020, 18, 200-211.	0.3	7
65	Endocytoscopy with NBI has the potential to correctly diagnose diminutive colorectal polyps that are difficult to diagnose using conventional NBI. Endoscopy International Open, 2020, 08, E360-E367.	0.9	7
66	Unsupervised colonoscopic depth estimation by domain translations with a Lambertian-reflection keeping auxiliary task. International Journal of Computer Assisted Radiology and Surgery, 2021, 16, 989-1001.	1.7	7
67	Depressed Colorectal Cancer: A New Paradigm in Early Colorectal Cancer. Clinical and Translational Gastroenterology, 2020, 11, e00269.	1.3	7
68	Retrospective analysis of large bowel obstruction or perforation caused by oral preparation for colonoscopy. Endoscopy International Open, 2017, 05, E471-E476.	0.9	6
69	White light-emitting contrast image capsule endoscopy for visualization of small intestine lesions: a pilot study. Endoscopy International Open, 2018, 06, E315-E321.	0.9	6
70	Tumor Location as a Prognostic Factor in T1 Colorectal Cancer. Journal of the Anus, Rectum and Colon, 2022, 6, 9-15.	0.4	6
71	Comparison of the endocytoscopic and clinicopathologic features of colorectal neoplasms. Endoscopy International Open, 2016, 04, E397-E402.	0.9	5
72	Use of endocytoscopy for identification of sessile serrated adenoma/polyps and hyperplastic polyps by quantitative image analysis of the luminal areas. Endoscopy International Open, 2017, 05, E769-E774.	0.9	5

#	Article	IF	CITATIONS
73	Stable polypâ€scene classification via subsampling and residual learning from an imbalanced large dataset. Healthcare Technology Letters, 2019, 6, 237-242.	1.9	5
74	Can artificial intelligence standardise colonoscopy quality?. The Lancet Gastroenterology and Hepatology, 2020, 5, 331-332.	3.7	5
75	Artificial intelligence for disease diagnosis: the criterion standard challenge. Gastrointestinal Endoscopy, 2022, 96, 370-372.	0.5	5
76	Magnifying chromoendoscopic and endocytoscopic findings of juvenile polyps in the colon and rectum. Oncology Letters, 2016, 11, 237-242.	0.8	4
77	In vivo detection of desmoplastic reaction using endocytoscopy: A new diagnostic marker of submucosal or more extensive invasion in colorectal carcinoma. Molecular and Clinical Oncology, 2017, 6, 291-295.	0.4	4
78	Diminutive intramucosal invasive (Tis) sigmoid colon carcinoma. Clinical Journal of Gastroenterology, 2018, 11, 359-363.	0.4	4
79	Clinicopathological features of T1 colorectal carcinomas with skip lymphovascular invasion. Oncology Letters, 2018, 16, 7264-7270.	0.8	4
80	Artificial intelligence and computer-aided diagnosis for colonoscopy: where do we stand now?. Translational Gastroenterology and Hepatology, 2021, 6, 0-0.	1.5	4
81	Use of advanced endoscopic technology for optical characterization of neoplasia in patients with ulcerative colitis: Systematic review. Digestive Endoscopy, 2022, 34, 1297-1310.	1.3	4
82	Two cases of colitisâ€associated neoplasia observed with endocytoscopy. Digestive Endoscopy, 2019, 31, 43-44.	1.3	3
83	How Far Will Clinical Application of Al Applications Advance for Colorectal Cancer Diagnosis?. Journal of the Anus, Rectum and Colon, 2020, 4, 47-50.	0.4	3
84	Short‑ and long‑term outcomes of self‑expanding metallic stent placement vs. emergency surgery for malignant colorectal obstruction. Molecular and Clinical Oncology, 2021, 14, 63.	0.4	3
85	Impact of artificial intelligence on colorectal polyp detection for early-career endoscopists: an international comparative study. Scandinavian Journal of Gastroenterology, 2022, 57, 1272-1277.	0.6	3
86	Characteristics of colorectal tumours in asymptomatic patients with negative immunochemical faecal occult blood test results. Molecular and Clinical Oncology, 2015, 3, 1019-1024.	0.4	2
87	Small invasive colon cancer with adenoma observed by endocytoscopy: A case report. World Journal of Gastrointestinal Endoscopy, 2020, 12, 304-309.	0.4	2
88	Challenges in artificial intelligence for polyp detection. Digestive Endoscopy, 2022, 34, 870-871.	1.3	2
89	Expression of matrix metalloproteinase-7 correlates with the invasion of T1 colorectal carcinoma. Oncology Letters, 2018, 15, 3614-3620.	0.8	1
90	Endocytoscopic findings of colorectal neuroendocrine tumors (with video). Endoscopy International Open, 2018, 06, E589-E593.	0.9	1

#	Article	IF	Citations
91	Artificial intelligence for magnifying endoscopy, endocytoscopy, and confocal laser endomicroscopy of the colorectum. Techniques and Innovations in Gastrointestinal Endoscopy, 2020, 22, 56-60.	0.4	1
92	Robust endocytoscopic image classification based on higher-order symmetric tensor analysis and multi-scale topological statistics. International Journal of Computer Assisted Radiology and Surgery, 2020, 15, 2049-2059.	1.7	1
93	Clinical and endoscopic characteristics of post-colonoscopy colorectal cancers detected within 10 years after a previous negative examination. Endoscopy International Open, 2021, 09, E1472-E1479.	0.9	1
94	Challenge to the "impossible― Gastrointestinal Endoscopy, 2021, 94, 639-640.	0.5	1
95	Progress in magnifying colonoscopy: Road to optical biopsy. Digestive Endoscopy, 2022, 34, 91-94.	1.3	1
96	A case of gastric anisakiasis with ulceration after tumor diagnosis. Progress of Digestive Endoscopy, 2014, 85, 76-77.	0.0	1
97	Clinicopathological features of small T1 colorectal cancers. World Journal of Clinical Cases, 2021, 9, 10088-10097.	0.3	1
98	Identification of a small, depressed type of colorectal invasive cancer by an artificial intelligence-assisted detection system. Endoscopy, 2021, , .	1.0	1
99	Letter: the combination of histologic remission and Mayo endoscopic score 1 as a suitable therapeutic target in ulcerative colitis. Alimentary Pharmacology and Therapeutics, 2021, 53, 955-956.	1.9	1
100	Current Status of Artificial Intelligence for Gastroenterology. Journal of Japan Society of Computer Aided Surgery, 2021, 23, 110-112.	0.1	0
101	Gastric cancer metastasis to the transverse colon requiring differentiation from early-stage colorectal cancer. Progress of Digestive Endoscopy, 2021, 98, 123-124.	0.0	0
102	Clinicopathological studies of colorectal cancer in the aged patients. Progress of Digestive Endoscopy, 2009, 74, 36-39.	0.0	0
103	The newly developed MoviPrep can reduce the patients' burden in the preparation for colonoscopy. Progress of Digestive Endoscopy, 2014, 85, 47-50.	0.0	0
104	A case of gastrointestinal injury associated with nonsteroidal anti-inflammatory drug use. Progress of Digestive Endoscopy, 2018, 93, 113-115.	0.0	0
105	Effects of the use of a wavy cap on the tip of the colonoscope on the training performance of novice endoscopists for colonoscopy. World Academy of Sciences Journal, 2020, 3, .	0.4	0
106	Artificial Intelligence for Diagnosing Colorectal Lesion. Nippon Laser Igakkaishi, 2021, , .	0.0	0
107	Uncertainty meets 3D-spatial feature in colonoscopic polyp-size determination. Computer Methods in Biomechanics and Biomedical Engineering: Imaging and Visualization, 0, , 1-10.	1.3	0