Glen McHale

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6472458/publications.pdf Version: 2024-02-01

		26610	27389
231	12,585	56	106
papers	citations	h-index	g-index
232	232	232	10381
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	An introduction to superhydrophobicity. Advances in Colloid and Interface Science, 2010, 161, 124-138.	7.0	530
2	Dual-Scale Roughness Produces Unusually Water-Repellent Surfaces. Advanced Materials, 2004, 16, 1929-1932.	11.1	488
3	Advances in piezoelectric thin films for acoustic biosensors, acoustofluidics and lab-on-chip applications. Progress in Materials Science, 2017, 89, 31-91.	16.0	467
4	Intrinsically Superhydrophobic Organosilica Solâ^Gel Foams. Langmuir, 2003, 19, 5626-5631.	1.6	410
5	Analysis of Droplet Evaporation on a Superhydrophobic Surface. Langmuir, 2005, 21, 11053-11060.	1.6	361
6	Contact-Angle Hysteresis on Super-Hydrophobic Surfaces. Langmuir, 2004, 20, 10146-10149.	1.6	329
7	Drop Evaporation on Solid Surfaces:Â Constant Contact Angle Mode. Langmuir, 2002, 18, 2636-2641.	1.6	320
8	Cassie and Wenzel:  Were They Really So Wrong?. Langmuir, 2007, 23, 8200-8205.	1.6	314
9	Liquid marbles: principles and applications. Soft Matter, 2011, 7, 5473.	1.2	293
10	Wetting and Wetting Transitions on Copper-Based Super-Hydrophobic Surfaces. Langmuir, 2005, 21, 937-943.	1.6	279
11	Evaporation of Microdroplets and the Wetting of Solid Surfaces. The Journal of Physical Chemistry, 1995, 99, 13268-13271.	2.9	255
12	Immersed superhydrophobic surfaces: Gas exchange, slip and drag reduction properties. Soft Matter, 2010, 6, 714-719.	1.2	250
13	Topological liquid diode. Science Advances, 2017, 3, eaao3530.	4.7	249
14	Topography Driven Spreading. Physical Review Letters, 2004, 93, 036102.	2.9	221
15	Superhydrophobic Copper Tubes with Possible Flow Enhancement and Drag Reduction. ACS Applied Materials & Interfaces, 2009, 1, 1316-1323.	4.0	204
16	Liquid marbles: topical context within soft matter and recent progress. Soft Matter, 2015, 11, 2530-2546.	1.2	204
17	Determination of the Receding Contact Angle of Sessile Drops on Polymer Surfaces by Evaporation. Langmuir, 1999, 15, 7378-7385.	1.6	179
18	Nano-scale superhydrophobicity: suppression of protein adsorption and promotion of flow-induced detachment. Lab on A Chip, 2008, 8, 582.	3.1	179

#	Article	IF	CITATIONS
19	Evaporation and the Wetting of a Low-Energy Solid Surface. Journal of Physical Chemistry B, 1998, 102, 1964-1967.	1.2	174
20	Porous materials show superhydrophobic to superhydrophilic switching. Chemical Communications, 2005, , 3135.	2.2	174
21	The use of high aspect ratio photoresist (SU-8) for super-hydrophobic pattern prototyping. Journal of Micromechanics and Microengineering, 2004, 14, 1384-1389.	1.5	161
22	Super-hydrophobic and super-wetting surfaces: Analytical potential?. Analyst, The, 2004, 129, 284.	1.7	155
23	Plastron properties of a superhydrophobic surface. Applied Physics Letters, 2006, 89, 104106.	1.5	153
24	The superhydrophobicity of polymer surfaces: Recent developments. Journal of Polymer Science, Part B: Polymer Physics, 2011, 49, 1203-1217.	2.4	151
25	Apparent contact angle and contact angle hysteresis on liquid infused surfaces. Soft Matter, 2017, 13, 101-110.	1.2	134
26	Global geometry and the equilibrium shapes of liquid drops on fibers. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2002, 206, 79-86.	2.3	133
27	Terminal velocity and drag reduction measurements on superhydrophobic spheres. Applied Physics Letters, 2009, 94, .	1.5	127
28	Molecular-Imprinted, Polymer-Coated Quartz Crystal Microbalances for the Detection of Terpenes. Analytical Chemistry, 2001, 73, 4225-4228.	3.2	124
29	Dielectrowetting Driven Spreading of Droplets. Physical Review Letters, 2011, 107, 186101.	2.9	118
30	Densityâ^'Viscosity Product of Small-Volume Ionic Liquid Samples Using Quartz Crystal Impedance Analysis. Analytical Chemistry, 2008, 80, 5806-5811.	3.2	115
31	Electrowetting of liquid marbles. Journal Physics D: Applied Physics, 2007, 40, 20-24.	1.3	105
32	Levitation-Free Vibrated Droplets: Resonant Oscillations of Liquid Marbles. Langmuir, 2009, 25, 529-533.	1.6	105
33	Electrowetting of Nonwetting Liquids and Liquid Marbles. Langmuir, 2007, 23, 918-924.	1.6	101
34	Influence of viscoelasticity and interfacial slip on acoustic wave sensors. Journal of Applied Physics, 2000, 88, 7304-7312.	1.1	97
35	Evaporation of Sessile Droplets on Slippery Liquid-Infused Porous Surfaces (SLIPS). Langmuir, 2015, 31, 11781-11789.	1.6	97
36	NO2 detection at room temperature with copper phthalocyanine thin film devices. Sensors and Actuators B: Chemical, 2000, 67, 307-311.	4.0	92

#	Article	IF	CITATIONS
37	Electrowetting on superhydrophobic SU-8 patterned surfaces. Sensors and Actuators A: Physical, 2006, 130-131, 189-193.	2.0	92
38	Voltage-programmable liquid optical interface. Nature Photonics, 2009, 3, 403-405.	15.6	92
39	The Shape and Stability of Small Liquid Drops on Fibers. Oil and Gas Science and Technology, 2001, 56, 47-54.	1.4	91
40	Water-repellent soil and its relationship to granularity, surface roughness and hydrophobicity: a materials science view. European Journal of Soil Science, 2005, 56, 445-452.	1.8	88
41	Wetting considerations in capillary rise and imbibition in closed square tubes and open rectangular cross-section channels. Microfluidics and Nanofluidics, 2013, 15, 309-326.	1.0	88
42	Voltage-induced spreading and superspreading of liquids. Nature Communications, 2013, 4, 1605.	5.8	88
43	Change in drag, apparent slip and optimum air layer thickness for laminar flow over an idealised superhydrophobic surface. Journal of Fluid Mechanics, 2013, 727, 488-508.	1.4	85
44	Learning from Superhydrophobic Plants: The Use of Hydrophilic Areas on Superhydrophobic Surfaces for Droplet Controlâ€Part of the "Langmuir 25th Year: Wetting and superhydrophobicity―special issue Langmuir, 2009, 25, 14121-14128.	1.6	82
45	Surface roughness and interfacial slip boundary condition for quartz crystal microbalances. Journal of Applied Physics, 2004, 95, 373-380.	1.1	81
46	Apparent Contact Angles on Lubricant-Impregnated Surfaces/SLIPS: From Superhydrophobicity to Electrowetting. Langmuir, 2019, 35, 4197-4204.	1.6	79
47	Wetting of a High-Energy Fiber Surface. Journal of Colloid and Interface Science, 1997, 186, 453-461.	5.0	73
48	Molecular imprinted polymer coated QCM for the detection of nandrolone. Analyst, The, 2002, 127, 1024-1026.	1.7	73
49	A sublimation heat engine. Nature Communications, 2015, 6, 6390.	5.8	73
50	Slippery Liquid-Infused Porous Surfaces and Droplet Transportation by Surface Acoustic Waves. Physical Review Applied, 2017, 7, .	1.5	62
51	Viscosity of a Spin-PolarizedHe3-He4Solution. Physical Review Letters, 1988, 61, 1619-1622.	2.9	61
52	Pulse mode shear horizontal-surface acoustic wave (SH-SAW) system for liquid based sensing applications. Biosensors and Bioelectronics, 2004, 19, 627-632.	5.3	61
53	A lichen protected by a super-hydrophobic and breathable structure. Journal of Plant Physiology, 2006, 163, 1193-1197.	1.6	61
54	Critical conditions for the wetting of soils. Applied Physics Letters, 2006, 89, 094101.	1.5	59

#	Article	IF	CITATIONS
55	Theoretical mass sensitivity of Love wave and layer guided acoustic plate mode sensors. Journal of Applied Physics, 2002, 91, 9701.	1.1	58
56	Effects of hydrophobicity on splash erosion of model soil particles by a single water drop impact. Earth Surface Processes and Landforms, 2013, 38, 1225-1233.	1.2	58
57	Transport properties of spin polarized3He-4He mixtures. Journal of Low Temperature Physics, 1988, 73, 333-353.	0.6	57
58	Superhydrophobic surfaces: a model approach to predict contact angle and surface energy of soil particles. European Journal of Soil Science, 2009, 60, 420-430.	1.8	57
59	Plastron induced drag reduction and increased slip on a superhydrophobic sphere. Soft Matter, 2011, 7, 10100.	1.2	57
60	Self-organization of hydrophobic soil and granular surfaces. Applied Physics Letters, 2007, 90, 054110.	1.5	55
61	The effect of a strong magnetic field on the damping of second sound in dilute3He-4He mixtures below 100 mK. Journal of Low Temperature Physics, 1989, 77, 327-346.	0.6	53
62	Superhydrophobic to superhydrophilic transitions of sol–gel films for temperature, alcohol or surfactant measurement. Materials Chemistry and Physics, 2007, 103, 112-117.	2.0	53
63	Pinning-Free Evaporation of Sessile Droplets of Water from Solid Surfaces. Langmuir, 2019, 35, 2989-2996.	1.6	53
64	A general approach to selection of multiple cubic volume elements using the ISIS technique. Magnetic Resonance in Medicine, 1988, 8, 323-331.	1.9	52
65	Simulations of laminar flow past a superhydrophobic sphere with drag reduction and separation delay. Physics of Fluids, 2013, 25, .	1.6	52
66	Not spreading in reverse: The dewetting of a liquid film into a single drop. Science Advances, 2016, 2, e1600183.	4.7	52
67	Evaporation of Microdroplets of Azeotropic Liquids. Journal of Physical Chemistry B, 2000, 104, 8217-8220.	1.2	50
68	Dynamic wetting and spreading and the role of topography. Journal of Physics Condensed Matter, 2009, 21, 464122.	0.7	48
69	Drop transport and positioning on lubricant-impregnated surfaces. Soft Matter, 2017, 13, 3404-3410.	1.2	48
70	Dielectrowetting: The past, present and future. Current Opinion in Colloid and Interface Science, 2018, 36, 28-36.	3.4	48
71	Detection of Polycyclic Aromatic Hydrocarbons Using Quartz Crystal Microbalances. Analytical Chemistry, 2003, 75, 1573-1577.	3.2	47
72	Theoretical mass, liquid, and polymer sensitivity of acoustic wave sensors with viscoelastic guiding layers. Journal of Applied Physics, 2003, 93, 675-690.	1.1	46

#	Article	IF	CITATIONS
73	Theory of the phonon contribution to the damping of second sound in3He-4He mixtures. Journal of Physics C: Solid State Physics, 1988, 21, 5757-5772.	1.5	45
74	Decoupling of the Liquid Response of a Superhydrophobic Quartz Crystal Microbalance. Langmuir, 2007, 23, 9823-9830.	1.6	45
75	Contact-Angle Hysteresis and Contact-Line Friction on Slippery Liquid-like Surfaces. Langmuir, 2020, 36, 15094-15101.	1.6	44
76	Compressional acoustic wave generation in microdroplets of water in contact with quartz crystal resonators. Journal of Applied Physics, 2001, 89, 676-680.	1.1	43
77	Analysis of evaporating droplets using ellipsoidal cap geometry. Journal of Adhesion Science and Technology, 1999, 13, 1375-1391.	1.4	42
78	Electric field induced reversible spreading of droplets into films on lubricant impregnated surfaces. Applied Physics Letters, 2017, 110, .	1.5	42
79	Flow and Drop Transport Along Liquid-Infused Surfaces. Annual Review of Fluid Mechanics, 2022, 54, 83-104.	10.8	42
80	Flexible conformable hydrophobized surfaces for turbulent flow drag reduction. Scientific Reports, 2015, 5, 10267.	1.6	41
81	Evaporation of Microdroplets of Three Alcohols. Journal of Physical Chemistry B, 1997, 101, 1265-1267.	1.2	39
82	Hierarchical Nanotexturing Enables Acoustofluidics on Slippery yet Sticky, Flexible Surfaces. Nano Letters, 2020, 20, 3263-3270.	4.5	38
83	Self-propelled droplet transport on shaped-liquid surfaces. Scientific Reports, 2020, 10, 14987.	1.6	37
84	Application of the Quartz Crystal Microbalance to the Evaporation of Colloidal Suspension Droplets. Langmuir, 2004, 20, 841-847.	1.6	35
85	Slippery Liquid-Like Solid Surfaces with Promising Antibiofilm Performance under Both Static and Flow Conditions. ACS Applied Materials & Interfaces, 2022, 14, 6307-6319.	4.0	35
86	Resonant conditions for Love wave guiding layer thickness. Applied Physics Letters, 2001, 79, 3542-3543.	1.5	34
87	Passive water control at the surface of a superhydrophobic lichen. Planta, 2011, 234, 1267-1274.	1.6	34
88	Contact angle-based predictive model for slip at the solid–liquid interface of a transverse-shear mode acoustic wave device. Journal of Applied Physics, 2003, 94, 6201-6207.	1.1	33
89	Surface free energy and microarray deposition technology. Analyst, The, 2007, 132, 192.	1.7	33
90	Manipulated wettability of a superhydrophobic quartz crystal microbalance through electrowetting. Journal Physics D: Applied Physics, 2013, 46, 345307.	1.3	33

#	Article	IF	CITATIONS
91	Frenkel's method and the dynamic wetting of heterogeneous planar surfaces. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2002, 206, 193-201.	2.3	32
92	Bimorph material/structure designs for high sensitivity flexible surface acoustic wave temperature sensors. Scientific Reports, 2018, 8, 9052.	1.6	32
93	Bidirectional motion of droplets on gradient liquid infused surfaces. Communications Physics, 2020, 3, .	2.0	32
94	Generalized concept of shear horizontal acoustic plate mode and Love wave sensors. Measurement Science and Technology, 2003, 14, 1847-1853.	1.4	31
95	All Solids, Including Teflon, Are Hydrophilic (To Some Extent), But Some Have Roughness Induced Hydrophobic Tendencies. Langmuir, 2009, 25, 7185-7187.	1.6	31
96	The spreading of small viscous stripes of oil. Journal Physics D: Applied Physics, 1995, 28, 1925-1929.	1.3	30
97	Bioinspired nanoparticle spray-coating for superhydrophobic flexible materials with oil/water separation capabilities. Bioinspiration and Biomimetics, 2018, 13, 024001.	1.5	30
98	Implications of ideas on superâ€hydrophobicity for water repellent soil. Hydrological Processes, 2007, 21, 2229-2238.	1.1	29
99	Dielectrophoresis-Driven Spreading of Immersed Liquid Droplets. Langmuir, 2015, 31, 1011-1016.	1.6	29
100	Leidenfrost transition temperature for stainless steel meshes. Materials Letters, 2016, 176, 205-208.	1.3	29
101	Leidenfrost heat engine: Sustained rotation of levitating rotors on turbine-inspired substrates. Applied Energy, 2019, 240, 399-408.	5.1	29
102	Surface Acoustic Waves to Control Droplet Impact onto Superhydrophobic and Slippery Liquid-Infused Porous Surfaces. ACS Applied Materials & Interfaces, 2021, 13, 46076-46087.	4.0	29
103	Amplitude scaling of a static wrinkle at an oil-air interface created by dielectrophoresis forces. Applied Physics Letters, 2010, 97, .	1.5	28
104	Spatially Configuring Wrinkle Pattern and Multiscale Surface Evolution with Structural Confinement. Advanced Functional Materials, 2018, 28, 1704228.	7.8	28
105	Integrating microfluidics and biosensing on a single flexible acoustic device using hybrid modes. Lab on A Chip, 2020, 20, 1002-1011.	3.1	28
106	Wet Adhesion and Adhesive Locomotion of Snails on Anti-Adhesive Non-Wetting Surfaces. PLoS ONE, 2012, 7, e36983.	1.1	28
107	Nickel phthalocyanine photovoltaic devices. Optical Materials, 1996, 6, 89-92.	1.7	27
108	Acoustic wave–liquid interactions. Materials Science and Engineering C, 2000, 12, 17-22.	3.8	27

#	Article	IF	CITATIONS
109	Evaluation of a Microfluidic Device for the Electrochemical Determination of Halide Content in Ionic Liquids. Analytical Chemistry, 2009, 81, 1628-1637.	3.2	27
110	Transitions of waterâ€drop impact behaviour on hydrophobic and hydrophilic particles. European Journal of Soil Science, 2013, 64, 324-333.	1.8	27
111	Analysis of Shape Distortions in Sessile Drops. Langmuir, 2001, 17, 6995-6998.	1.6	26
112	Effect of Particle Size on Droplet Infiltration into Hydrophobic Porous Media As a Model of Water Repellent Soil. Environmental Science & Technology, 2011, 45, 9666-9670.	4.6	26
113	Drag reduction properties of superhydrophobic mesh pipes. Surface Topography: Metrology and Properties, 2017, 5, 034001.	0.9	26
114	Surface acoustic wave resonances in the spreading of viscous fluids. Physical Review B, 1999, 59, 8262-8270.	1.1	25
115	The effect of NO2 doping on the gas sensing properties of copper phthalocyanine thin film devices. Thin Solid Films, 2000, 360, 10-12.	0.8	25
116	Low Friction Droplet Transportation on a Substrate with a Selective Leidenfrost Effect. ACS Applied Materials & Interfaces, 2016, 8, 22658-22663.	4.0	25
117	Antiwetting and Antifouling Performances of Different Lubricant-Infused Slippery Surfaces. Langmuir, 2020, 36, 13396-13407.	1.6	24
118	Evaporation and Electrowetting of Sessile Droplets on Slippery Liquid-Like Surfaces and Slippery Liquid-Infused Porous Surfaces (SLIPS). Langmuir, 2020, 36, 11332-11340.	1.6	24
119	Mass sensitivity of acoustic wave devices from group and phase velocity measurements. Journal of Applied Physics, 2002, 92, 3368-3373.	1.1	23
120	Enantioselective detection of l-serine. Sensors and Actuators B: Chemical, 2003, 89, 103-106.	4.0	23
121	Flexible/Bendable Acoustofluidics Based on Thin-Film Surface Acoustic Waves on Thin Aluminum Sheets. ACS Applied Materials & Interfaces, 2021, 13, 16978-16986.	4.0	23
122	Friction Coefficients for Droplets on Solids: The Liquid–Solid Amontons' Laws. Langmuir, 2022, 38, 4425-4433.	1.6	23
123	Estimation of contact angles on fibers. Journal of Adhesion Science and Technology, 1999, 13, 1457-1469.	1.4	22
124	Development of a combined surface plasmon resonance/surface acoustic wave device for the characterization of biomolecules. Measurement Science and Technology, 2009, 20, 124011.	1.4	22
125	Double-sided slippery liquid-infused porous materials using conformable mesh. Scientific Reports, 2019, 9, 13280.	1.6	22
126	Frenkel's method and the spreading of small spherical droplets. Journal Physics D: Applied Physics, 1994, 27, 2619-2623.	1.3	21

#	Article	IF	CITATIONS
127	Layer guided shear horizontally polarized acoustic plate modes. Journal of Applied Physics, 2002, 91, 5735-5744.	1.1	21
128	Quantitative NMR monitoring of liquid ingress into repellent heterogeneous layered fabrics. Journal of Magnetic Resonance, 2008, 193, 32-36.	1.2	21
129	Experimental study of Love wave devices with thick guiding layers. Sensors and Actuators A: Physical, 2004, 109, 180-185.	2.0	20
130	Investigation of the drag reducing effect of hydrophobized sand on cylinders. Journal Physics D: Applied Physics, 2014, 47, 205302.	1.3	20
131	Engineering inclined orientations of piezoelectric films for integrated acoustofluidics and lab-on-a-chip operated in liquid environments. Lab on A Chip, 2021, 21, 254-271.	3.1	20
132	Small volume laboratory on a chip measurements incorporating the quartz crystal microbalance to measure the viscosity-density product of room temperature ionic liquids. Biomicrofluidics, 2010, 4, 14107.	1.2	19
133	Capillary origami: superhydrophobic ribbon surfaces and liquid marbles. Beilstein Journal of Nanotechnology, 2011, 2, 145-151.	1.5	19
134	Analysis of a static undulation on the surface of a thin dielectric liquid layer formed by dielectrophoresis forces. Journal of Applied Physics, 2011, 110, 024107.	1.1	19
135	Robust spatially resolved pressure measurements using MRI with novel buoyant advection-free preparations of stable microbubbles in polysaccharide gels. Journal of Magnetic Resonance, 2008, 193, 159-167.	1.2	18
136	Capillary origami and superhydrophobic membrane surfaces. Applied Physics Letters, 2013, 102, .	1.5	18
137	Energy Invariance in Capillary Systems. Physical Review Letters, 2017, 118, 218003.	2.9	18
138	Electrical properties of nickel phthalocyanine (NiPc) sandwich devices incorporating a tetracyanoquinodimethane (TCNQ) layer. Semiconductor Science and Technology, 1997, 12, 455-459.	1.0	16
139	Analysis of clogging in constructed wetlands using magnetic resonance. Analyst, The, 2011, 136, 2283.	1.7	16
140	Acoustic Waves for Active Reduction of Contact Time in Droplet Impact. Physical Review Applied, 2020, 14, .	1.5	16
141	Apparent contact angle of drops on liquid infused surfaces: geometric interpretation. Soft Matter, 2021, 17, 9553-9559.	1.2	16
142	Nanoscale "Earthquake―Effect Induced by Thin Film Surface Acoustic Waves as a New Strategy for Ice Protection. Advanced Materials Interfaces, 2021, 8, 2001776.	1.9	16
143	Statics and dynamics of liquid barrels in wedgeÂgeometries. Journal of Fluid Mechanics, 2018, 842, 26-57.	1.4	15
144	Droplet Retention and Shedding on Slippery Substrates. Langmuir, 2019, 35, 9146-9151.	1.6	15

#	Article	IF	CITATIONS
145	Low-Friction Self-Centering Droplet Propulsion and Transport Using a Leidenfrost Herringbone-Ratchet Structure. Physical Review Applied, 2019, 11, .	1.5	15
146	Generalized Love waves. Europhysics Letters, 2002, 58, 818-822.	0.7	14
147	Near Axisymmetric Partial Wetting Using Interface-Localized Liquid Dielectrophoresis. Langmuir, 2016, 32, 10844-10850.	1.6	14
148	SU-8 Guiding Layer for Love Wave Devices. Sensors, 2007, 7, 2539-2547.	2.1	13
149	Surface acoustic wave–liquid drop interactions. Sensors and Actuators A: Physical, 1999, 76, 89-92.	2.0	12
150	Developing interface localized liquid dielectrophoresis for optical applications. Proceedings of SPIE, 2012, , .	0.8	12
151	Harmonic Love wave devices for biosensing applications. Electronics Letters, 2001, 37, 340.	0.5	11
152	Drop impact behaviour on alternately hydrophobic and hydrophilic layered bead packs. Chemical Engineering Research and Design, 2016, 110, 200-208.	2.7	11
153	Interaction of surface acoustic waves with viscous liquids. Faraday Discussions, 1997, 107, 15-26.	1.6	10
154	Capillary Penetration into Inclined Circular Glass Tubes. Langmuir, 2016, 32, 1289-1298.	1.6	10
155	A viscous switch for liquid-liquid dewetting. Communications Physics, 2020, 3, .	2.0	10
156	Bubble Control, Levitation, and Manipulation Using Dielectrophoresis. Advanced Materials Interfaces, 2021, 8, 2001204.	1.9	10
157	Second Sound Measurements in ³ He– ⁴ He Mixtures. Japanese Journal of Applied Physics, 1987, 26, 21.	0.8	10
158	Residual conductance at atmospheric pressure in electroformed thin gold films. Journal of Materials Science Letters, 1992, 11, 1240-1242.	0.5	9
159	Biaxially Morphing Droplet Shape by an Active Surface. Advanced Materials Interfaces, 2021, 8, 2001199.	1.9	9
160	SU-8 Guiding Layer for Love Wave Devices. Sensors, 2007, 7, 2539-2547.	2.1	9
161	ST Quartz Acoustic Wave Sensors with Sectional Guiding Layers. Sensors, 2008, 8, 4384-4391.	2.1	9
162	Liquids shape up nicely. Nature Materials, 2007, 6, 627-628.	13.3	8

#	Article	IF	CITATIONS
163	Thermal conductivity measurement of liquids in a microfluidic device. Microfluidics and Nanofluidics, 2011, 10, 123-132.	1.0	8
164	Embroidered Coils for Magnetic Resonance Sensors. Electronics (Switzerland), 2013, 2, 168-177.	1.8	8
165	Planar selective Leidenfrost propulsion without physically structured substrates or walls. Applied Physics Letters, 2020, 117, .	1.5	8
166	Electrostatic control of dewetting dynamics. Applied Physics Letters, 2020, 116, .	1.5	8
167	Slippery liquidâ€infused porous surfaces: The effect of oil on the water repellence of hydrophobic and superhydrophobic soils. European Journal of Soil Science, 2021, 72, 963-978.	1.8	8
168	Analysis of evaporating thick liquid films on solids. Journal of Adhesion Science and Technology, 2002, 16, 1869-1881.	1.4	7
169	Acoustic determination of polymer molecular weights and rotation times. Journal of Polymer Science, Part B: Polymer Physics, 2002, 40, 1490-1495.	2.4	7
170	ST Quartz Acoustic Wave Sensors with Sectional Guiding Layers. Sensors, 2008, 8, 4384-4391.	2.1	7
171	Determination of the Physical Properties of Room Temperature Ionic Liquids Using a Love Wave Device. Analytical Chemistry, 2011, 83, 6717-6721.	3.2	7
172	Plastron Respiration Using Commercial Fabrics. Materials, 2014, 7, 484-495.	1.3	7
173	Underlying conduction in electroformed gold and silver films. Journal of Materials Science Letters, 1993, 12, 125-127.	0.5	6
174	Electrical properties of thin gold films on (3-Mercaptopropyl)trimethoxysilane (MPS) treated glass substrates. Vacuum, 1995, 46, 315-318.	1.6	6
175	Reflection of surface acoustic waves by localized wetting liquids. Applied Physics Letters, 1997, 71, 3785-3786.	1.5	6
176	Investigation of Deposition of Monodisperse Particles onto Fibers. Langmuir, 2002, 18, 4979-4983.	1.6	6
177	The effect of SU-8 patterned surfaces on the response of the quartz crystal microbalance. Sensors and Actuators A: Physical, 2005, 123-124, 73-76.	2.0	6
178	Separate density and viscosity determination of room temperature ionic liquids using dual Quartz Crystal Microbalances. , 2009, , .		6
179	The Self Assembly of Superhydrophobic Copper Thiolate Films on Copper in Thiol Solutions. Zeitschrift Fur Physikalische Chemie, 2012, 226, 187-200.	1.4	6
180	Beyond Leidenfrost levitation: A thin-film boiling engine for controlled power generation. Applied Energy, 2021, 287, 116556.	5.1	6

#	Article	lF	CITATIONS
181	Controlling the breakup of toroidal liquid films on solid surfaces. Scientific Reports, 2021, 11, 8120.	1.6	6
182	Surface acoustic wave device design for gas sensing applications. Electronics Letters, 1998, 34, 1706.	0.5	5
183	Pulse mode operation of Love wave devices for biosensing applications. Analyst, The, 2001, 126, 2107-2109.	1.7	5
184	Lithium tantalate layer guided plate mode sensors. Sensors and Actuators A: Physical, 2006, 132, 241-244.	2.0	5
185	Low-Cost QCM Sensor System for Screening Semen Samples. Journal of Sensors, 2010, 2010, 1-5.	0.6	5
186	Towards MRI microarrays. Chemical Communications, 2010, 46, 2420.	2.2	5
187	Lithographically fabricated SU8 composite structures for wettability control. Surface and Coatings Technology, 2014, 240, 179-183.	2.2	5
188	Interfacial Strategies for Smart Slippery Surfaces. Journal of Bionic Engineering, 2020, 17, 633-643.	2.7	5
189	A surface acoustic wave technique for the observation of dynamic wetting. Journal Physics D: Applied Physics, 1995, 28, 1930-1936.	1.3	4
190	Gold-ChloroIndium Phthalocyanine (ClInPc)-metal sandwich structures. International Journal of Electronics, 1996, 81, 371-376.	0.9	4
191	Layer guided-acoustic plate mode biosensors for monitoring MHC–peptide interactions. Analyst, The, 2006, 131, 892-894.	1.7	4
192	Sensor response of superhydrophobic quartz crystal resonators. , 2008, , .		4
193	Rayleigh and shear-horizontal surface acoustic waves simultaneously generated in inclined ZnO films for acoustofluidic lab-on-a-chip. Surface and Coatings Technology, 2022, 442, 128336.	2.2	4
194	A functional approach to the Kustaanheimo-Steifel transformation. Annals of Physics, 1987, 175, 267-277.	1.0	3
195	Thin film metal-insulator-metal structure with a Langmuir-Blodgett overlayer. Vacuum, 1994, 45, 897-900.	1.6	3
196	Layer-guided shear acoustic plate mode sensor. Applied Physics Letters, 2003, 82, 2181-2183.	1.5	3
197	An EP-SAW for measurements of particulate matter in ambient air. Nondestructive Testing and Evaluation, 2005, 20, 3-7.	1.1	3
198	Hydrophobic Smart Material for Water Transport and Collection. , 2012, , 49-55.		3

#	Article	IF	CITATIONS
199	ZnO thin film based flexible temperature sensor. , 2017, , .		3
200	Lattice Boltzmann Simulations of Multiphase Dielectric Fluids. Langmuir, 2021, 37, 7328-7340.	1.6	3
201	Electroluminescence and electron emission in planar MIM structures. International Journal of Electronics, 1994, 76, 717-721.	0.9	2
202	Experimental Study of Love Wave Sensor Response by Phase and Group Velocity Measurement. IEEE Sensors Journal, 2004, 4, 216-220.	2.4	2
203	Assessing sperm motility using acoustic plate mode devices. Frequency Control Symposium and Exhibition, Proceedings of the IEEE International, 2007, , .	0.0	2
204	Love wave sensors: Sectional guiding layers. , 2008, , .		2
205	The Viscosity of Spin Polarized3He–4He Mixtures. Japanese Journal of Applied Physics, 1987, 26, 209.	0.8	2
206	Leidenfrost Effect and Surface Wettability. , 2022, , 189-233.		2
207	Theory of the Phonon Contribution to the Attenuation of Second Sound in3He–4He Mixtures. Japanese Journal of Applied Physics, 1987, 26, 19.	0.8	1
208	A group theoretical study of planar methyl rotation. Journal of Physics Condensed Matter, 1990, 2, 7257-7264.	0.7	1
209	Electroformed thin gold films on regularly corrugated substrates. Vacuum, 1993, 44, 1001-1003.	1.6	1
210	Negative differential resistance in thin metal films with a cadmium arachidate overlayer. International Journal of Electronics, 1994, 76, 771-775.	0.9	1
211	Negative differential resistance in MIM devices from vacuum to atmospheric pressure. International Journal of Electronics, 1996, 81, 435-439.	0.9	1
212	An acoustic technique for the monitoring of dynamic wetting behavior. Journal of Adhesion Science and Technology, 1999, 13, 1471-1480.	1.4	1
213	A SAW oscillator for monitoring particulate matter in air. Nondestructive Testing and Evaluation, 2005, 20, 231-235.	1.1	1
214	Response of quartz crystal resonators possessing a superhydrophobic surface. Frequency Control Symposium and Exhibition, Proceedings of the IEEE International, 2007, , .	0.0	1
215	Layer guided surface acoustic wave sensors using langasite substrates. , 2009, , .		1
216	Density and viscosity measurements of room temperature ionic liquids using patterned Quartz Crystal Microbalances. , 2009, , .		1

13

#	Article	IF	CITATIONS
217	Two-dimensional electrodynamics and the global structure of space. Journal of Physics A, 1986, 19, 2099-2104.	1.6	0
218	The influence of nitrogen on the electrical conductivity of planar metal-insulator-metal structures. Journal of Materials Science Letters, 1995, 14, 830-831.	0.5	0
219	Influence of film resistance on negative differential resistance characteristics in electroformed thin-film devices. International Journal of Electronics, 1995, 78, 501-508.	0.9	0
220	Gold-chloroindium phthalocyanine (ClInPc)-metal sandwich structures. , 1996, 2780, 289.		0
221	Negative differential resistance in MIM devices from vacuum to atmospheric pressure. , 1996, 2780, 38.		0
222	Theoretical model of Rayleigh wave interaction with stripes of viscous liquids. , 0, , .		0
223	Layer guided shear horizontal acoustic plate mode sensors. , 0, , .		0
224	Small volume determination of the viscosity-density product for ionic liquids using quartz crystal harmonics. , 2008, , .		0
225	Elastic instabilities induced large surface strain sensing structures (EILS). , 2015, , .		0
226	Hierarchical Structures: Spatially Configuring Wrinkle Pattern and Multiscale Surface Evolution with Structural Confinement (Adv. Funct. Mater. 1/2018). Advanced Functional Materials, 2018, 28, 1870005.	7.8	0
227	Microheater isolation characterisation to aid the optimisation of a MEMS Leidenfrost engine. , 2020, , .		0
228	Effect of Vapour Pressure on Power Output of a Leidenfrost Heat Engine. , 2021, , 131-135.		0
229	Snail Deterrent Properties of a Soot based Flexible Superhydrophobic Surface. , 0, , .		0
230	Superhydrophobicity: Localized Parameters And Gradient Surfaces. , 0, , 217-234.		0
231	Dielectrowetting on curved surfaces. Applied Physics Letters, 2022, 120, 191601.	1.5	0