Michel Cogné

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6472291/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Targeting IgE polyadenylation signal with antisense oligonucleotides decreases IgE secretion and plasma cell viability. Journal of Allergy and Clinical Immunology, 2022, 149, 1795-1801.	2.9	7
2	RNA-based immunoglobulin repertoire sequencing is a new tool for the management of monoclonal gammopathy of renal (kidney) significance. Kidney International, 2022, 101, 331-337.	5.2	11
3	Beneficial effects of citrulline enteral administration on sepsis-induced T cell mitochondrial dysfunction. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, .	7.1	13
4	Anti-FcαRI Monoclonal Antibodies Resolve IgA Autoantibody-Mediated Disease. Frontiers in Immunology, 2022, 13, 732977.	4.8	7
5	Editorial: Germinal Centers in Lymphoid and Non-Lymphoid Tissues: Adaptive and Evolving Structures. Frontiers in Immunology, 2022, 13, 880733.	4.8	1
6	A comparison of Sars-Cov-2 vaccine platforms: the CoviCompare project. Nature Medicine, 2022, 28, 882-884.	30.7	7
7	Bromodomain and extraterminal (BET) protein inhibition of IgC/IgE production in murine B cells is counterâ€balanced by a strong Th2 bias. Clinical and Translational Immunology, 2021, 10, e1280.	3.8	1
8	Venoarterial extracorporeal membrane oxygenation induces early immune alterations. Critical Care, 2021, 25, 9.	5.8	22
9	SARS-CoV-2-Induced ARDS Associates with MDSC Expansion, Lymphocyte Dysfunction, and Arginine Shortage. Journal of Clinical Immunology, 2021, 41, 515-525.	3.8	87
10	lgH 3' regulatory region increases ectopic class switch recombination. PLoS Genetics, 2021, 17, e1009288.	3.5	5
11	Immunotherapy perspectives in the new era of B-cell editing. Blood Advances, 2021, 5, 1770-1779.	5.2	6
12	Comparative immune profiling of acute respiratory distress syndrome patients with or without SARS-CoV-2 infection. Cell Reports Medicine, 2021, 2, 100291.	6.5	17
13	Transcription/Replication Conflicts in Tumorigenesis and Their Potential Role as Novel Therapeutic Targets in Multiple Myeloma. Cancers, 2021, 13, 3755.	3.7	7
14	History of IgA Nephropathy Mouse Models. Journal of Clinical Medicine, 2021, 10, 3142.	2.4	7
15	Preclinical study of 212Pb alpha-radioimmunotherapy targeting CD20 in non-Hodgkin lymphoma. British Journal of Cancer, 2021, 125, 1657-1665.	6.4	11
16	UnAIDed Class Switching in Activated B-Cells Reveals Intrinsic Features of a Self-Cleaving IgH Locus. Frontiers in Immunology, 2021, 12, 737427.	4.8	4
17	Fam72a enforces error-prone DNA repair during antibody diversification. Nature, 2021, 600, 329-333.	27.8	26
18	Mediator contributes to IgH locus VDJ rearrangements by promoting usage of most distal V segments. Cellular and Molecular Immunology, 2020, 17, 407-409.	10.5	0

#	Article	IF	CITATIONS
19	²¹² Pb α-Radioimmunotherapy Targeting CD38 in Multiple Myeloma: A Preclinical Study. Journal of Nuclear Medicine, 2020, 61, 1058-1065.	5.0	19
20	Impact of HIV-1 Vpr manipulation of the DNA repair enzyme UNG2 on B lymphocyte class switch recombination. Journal of Translational Medicine, 2020, 18, 310.	4.4	3
21	Immunoglobulin variable domain high-throughput sequencing reveals specific novel mutational patterns in POEMS syndrome. Blood, 2020, 135, 1750-1758.	1.4	29
22	Immunoglobulin light chain toxicity in a mouse model of monoclonal immunoglobulin light-chain deposition disease. Blood, 2020, 136, 1645-1656.	1.4	7
23	Physiological and druggable skipping of immunoglobulin variable exons in plasma cells. Cellular and Molecular Immunology, 2019, 16, 810-819.	10.5	11
24	An engineered human Fc domain that behaves like a pH-toggle switch for ultra-long circulation persistence. Nature Communications, 2019, 10, 5031.	12.8	49
25	Investigating the Potential of212Pb-rituximab as an Alpha-radioimmunotherapy for the Treatment of Non-Hodgkinâ€~s Lymphoma. Journal of Medical Imaging and Radiation Sciences, 2019, 50, S19.	0.3	0
26	Mesangial Deposition Can Strongly Involve Innate-Like IgA Molecules Lacking Affinity Maturation. Journal of the American Society of Nephrology: JASN, 2019, 30, 1238-1249.	6.1	9
27	Locus suicide recombination actively occurs on the functionally rearranged IgH allele in B-cells from inflamed human lymphoid tissues. PLoS Genetics, 2019, 15, e1007721.	3.5	18
28	IgH locus suicide recombination does not depend on NHEJ in contrast to CSR in B cells. Cellular and Molecular Immunology, 2019, 16, 201-202.	10.5	4
29	Animal models of monoclonal immunoglobulin-related renal diseases. Nature Reviews Nephrology, 2018, 14, 246-264.	9.6	43
30	PAX5A and PAX5B isoforms are both efficient to drive B cell differentiation. Oncotarget, 2018, 9, 32841-32854.	1.8	4
31	G-quadruplex DNA targeting alters class-switch recombination in B cells and attenuates allergic inflammation. Journal of Allergy and Clinical Immunology, 2018, 142, 1352-1355.	2.9	16
32	Comprehensive molecular characterization of a heavy chain deposition disease case. Haematologica, 2018, 103, e557-e560.	3.5	8
33	Detecting Rare AID-Induced Mutations in B-Lineage Oncogenes from High-Throughput Sequencing Data Using the Detection of Minor Variants by Error Correction Method. Journal of Immunology, 2018, 201, 950-956.	0.8	11
34	3'Igh enhancers hs3b/hs4 are dispensable for Myc deregulation in mouse plasmacytomas with T(12;15) translocations. Oncotarget, 2018, 9, 34528-34542.	1.8	3
35	Nuclear Proximity of Mtr4 to RNA Exosome Restricts DNA Mutational Asymmetry. Cell, 2017, 169, 523-537.e15.	28.9	56
36	Eμ and 3′RR IgH enhancers show hierarchic unilateral dependence in mature B-cells. Scientific Reports, 2017, 7, 442.	3.3	21

#	Article	IF	CITATIONS
37	CSReport: A New Computational Tool Designed for Automatic Analysis of Class Switch Recombination Junctions Sequenced by High-Throughput Sequencing. Journal of Immunology, 2017, 198, 4148-4155.	0.8	20
38	Functional anatomy of the immunoglobulin heavy chain 3Î,, super-enhancer needs not only core enhancer elements but also their unique DNA context. Nucleic Acids Research, 2017, 45, 5829-5837.	14.5	35
39	Circulating free light chain measurement in the diagnosis, prognostic assessment and evaluation of response of AL amyloidosis: comparison of Freelite and N latex FLC assays. Clinical Chemistry and Laboratory Medicine, 2017, 55, 1734-1743.	2.3	33
40	Unravelling the immunopathological mechanisms of heavy chain deposition disease with implicationsÂfor clinical management. Kidney International, 2017, 91, 423-434.	5.2	66
41	B Cell Intrinsic Mechanisms Constraining IgE Memory. Frontiers in Immunology, 2017, 8, 1277.	4.8	14
42	The IgH locus 3′ cis-regulatory super-enhancer co-opts AID for allelic transvection. Oncotarget, 2017, 8, 12929-12940.	1.8	14
43	Characterization of human FCRL4-positive B cells. PLoS ONE, 2017, 12, e0179793.	2.5	21
44	Deciphering the importance of the palindromic architecture of the immunoglobulin heavy-chain 3' regulatory region. Nature Communications, 2016, 7, 10730.	12.8	33
45	Loss of the HVEM Tumor Suppressor in Lymphoma and Restoration by Modified CAR-T Cells. Cell, 2016, 167, 405-418.e13.	28.9	204
46	First Membrane Proximal External Region–Specific Anti-HIV1 Broadly Neutralizing Monoclonal IgA1 Presenting Short CDRH3 and Low Somatic Mutations. Journal of Immunology, 2016, 197, 1979-1988.	0.8	1
47	A plasma cell differentiation quality control ablates B cell clones with biallelic Ig rearrangements and truncated Ig production. Journal of Experimental Medicine, 2016, 213, 109-122.	8.5	11
48	Sequential activation and distinct functions for distal and proximal modules within the IgH 3′ regulatory region. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 1618-1623.	7.1	24
49	IgA Structure Variations Associate with Immune Stimulations and IgA Mesangial Deposition. Journal of the American Society of Nephrology: JASN, 2016, 27, 2748-2761.	6.1	23
50	Impaired Lysosomal Function Underlies Monoclonal Light Chain–Associated Renal Fanconi Syndrome. Journal of the American Society of Nephrology: JASN, 2016, 27, 2049-2061.	6.1	52
51	A mouse model recapitulating human monoclonal heavy chain deposition disease evidences the relevance of proteasome inhibitor therapy. Blood, 2015, 126, 757-765.	1.4	36
52	A Prospective Phase II Trial of Lenalidomide and Dexamethasone (Len-Dex) in POEMS Syndrome. Clinical Lymphoma, Myeloma and Leukemia, 2015, 15, e57.	0.4	1
53	Comment on "lgH Chain Class Switch Recombination: Mechanism and Regulationâ€: Journal of Immunology, 2015, 194, 2039-2040.	0.8	4
54	Self-Restrained B Cells Arise following Membrane IgE Expression. Cell Reports, 2015, 10, 900-909.	6.4	57

#	Article	IF	CITATIONS
55	Efficient AID targeting of switch regions is not sufficient for optimal class switch recombination. Nature Communications, 2015, 6, 7613.	12.8	10
56	Developmental Switch in the Transcriptional Activity of a Long-Range Regulatory Element. Molecular and Cellular Biology, 2015, 35, 3370-3380.	2.3	18
57	Elucidation of IgH 3′ region regulatory role during class switch recombination via germline deletion. Nature Communications, 2015, 6, 7084.	12.8	55
58	The IgH 3′ regulatory region governs μ chain transcription in mature B lymphocytes and the B cell fate. Oncotarget, 2015, 6, 4845-4852.	1.8	26
59	The IgH 3′ regulatory region influences lymphomagenesis in Igλ-Myc mice. Oncotarget, 2015, 6, 20302-20311.	1.8	4
60	Self-control for IgE production. Oncotarget, 2015, 6, 19966-19967.	1.8	0
61	Abnormal apical-to-basal transport of dietary ovalbumin by secretory IgA stimulates a mucosal Th1 response. Mucosal Immunology, 2014, 7, 315-324.	6.0	5
62	The Eμ Enhancer Region Influences H Chain Expression and B Cell Fate without Impacting IgVH Repertoire and Immune Response In Vivo. Journal of Immunology, 2014, 193, 1171-1183.	0.8	29
63	Elucidation of the enigmatic IgD class-switch recombination via germline deletion of the IgH 3′ regulatory region. Journal of Experimental Medicine, 2014, 211, 975-985.	8.5	65
64	Immunoglobulin genes undergo legitimate repair in human B cells not only after cis- but also frequent trans-class switch recombination. Genes and Immunity, 2014, 15, 341-346.	4.1	11
65	A Prospective Phase II Trial of Lenalidomide and Dexamethasone (LEN-DEX) in POEMS Syndrome. Blood, 2014, 124, 36-36.	1.4	10
66	AID-induced remodeling of immunoglobulin genes and B cell fate. Oncotarget, 2014, 5, 1118-1131.	1.8	24
67	The class-specific BCR tonic signal modulates lymphomagenesis in ac-mycderegulation transgenic model. Oncotarget, 2014, 5, 8995-9006.	1.8	10
68	Flexible Long-Range Loops in the VH Gene Region of the Igh Locus Facilitate the Generation of a Diverse Antibody Repertoire. Immunity, 2013, 39, 229-244.	14.3	130
69	<scp>B</scp> â€cell receptor signal strength influences terminal differentiation. European Journal of Immunology, 2013, 43, 619-628.	2.9	26
70	The IgH 3′ regulatory region controls somatic hypermutation in germinal center B cells. Journal of Experimental Medicine, 2013, 210, 1501-1507.	8.5	100
71	IGHV gene features and MYD88 L265P mutation separate the three marginal zone lymphoma entities and Waldenström macroglobulinemia/lymphoplasmacytic lymphomas. Leukemia, 2013, 27, 183-189. 	7.2	169
72	Activation-induced deaminase in B lymphocyte maturation and beyond. Biomedical Journal, 2013, 36, 259.	3.1	12

#	Article	IF	CITATIONS
73	Transglutaminase is essential for IgA nephropathy development acting through IgA receptors. Journal of Experimental Medicine, 2012, 209, 793-806.	8.5	145
74	Class-Specific Effector Functions of Therapeutic Antibodies. Methods in Molecular Biology, 2012, 901, 295-317.	0.9	2
75	Cross Talk between Immunoglobulin Heavy-Chain Transcription and RNA Surveillance during B Cell Development. Molecular and Cellular Biology, 2012, 32, 107-117.	2.3	28
76	AID-Driven Deletion Causes Immunoglobulin Heavy Chain Locus Suicide Recombination in B Cells. Science, 2012, 336, 931-934.	12.6	76
77	Specific impairment of proximal tubular cell proliferation by a monoclonal light chain responsible for Fanconi syndrome. Nephrology Dialysis Transplantation, 2012, 27, 4368-4377.	0.7	6
78	Anti-CD20 IgA can protect mice against lymphoma development: evaluation of the direct impact of IgA and cytotoxic effector recruitment on CD20 target cells. Haematologica, 2012, 97, 1686-1694.	3.5	34
79	Enhancers Located in Heavy Chain Regulatory Region (hs3a, hs1,2, hs3b, and hs4) Are Dispensable for Diversity of VDJ Recombination. Journal of Biological Chemistry, 2012, 287, 8356-8360.	3.4	33
80	Production of Human or Humanized Antibodies in Mice. Methods in Molecular Biology, 2012, 901, 149-159.	0.9	11
81	A Defect of the INK4-Cdk4 Checkpoint and Myc Collaborate in Blastoid Mantle Cell Lymphoma–Like Lymphoma Formation in Mice. American Journal of Pathology, 2012, 180, 1688-1701.	3.8	24
82	Deletion of the <i>α</i> immunoglobulin chain membraneâ€anchoring region reduces but does not abolish IgA secretion. Immunology, 2012, 136, 54-63.	4.4	5
83	Mantle cell lymphoma-like lymphomas in c-myc-3'RR/p53+/â^ mice and c-myc-3'RR/Cdk4R24C mice: differential oncogenic mechanisms but similar cellular origin. Oncotarget, 2012, 3, 586-593.	1.8	18
84	Similarity of Fine Specificity of IgA Anti-gliadin Antibodies between Patients with Celiac Disease and Humanized α1KI Mice. Journal of Agricultural and Food Chemistry, 2011, 59, 3092-3100.	5.2	4
85	The IgH Locus 3′ Regulatory Region. Advances in Immunology, 2011, 110, 27-70.	2.2	111
86	Complexes between nuclear factor-κB p65 and signal transducer and activator of transcription 3 are key actors in inducing activation-induced cytidine deaminase expression and immunoglobulin A production in CD40L plus interleukin-10-treated human blood B cells. Clinical and Experimental	2.6	13
87	Glycotranscriptome study reveals an enzymatic switch modulating glycosaminoglycan synthesis during Bâ€cell development and activation. European Journal of Immunology, 2011, 41, 3632-3644.	2.9	19
88	Gammopathy with IgA mesangial deposition provides a monoclonal model of IgA nephritogenicity and offers new insights into its molecular mechanisms. Nephrology Dialysis Transplantation, 2011, 26, 3930-3937.	0.7	11
89	A p53 Defect Sensitizes Various Stages of B Cell Development to Lymphomagenesis in Mice Carrying an IgH 3′ Regulatory Region-Driven c-myc Transgene. Journal of Immunology, 2011, 187, 5772-5782.	0.8	14
90	Toward Understanding Renal Fanconi Syndrome: Step by Step Advances through Experimental Models. Contributions To Nephrology, 2011, 169, 247-261.	1.1	49

#	Article	IF	CITATIONS
91	Polymeric IgA1 controls erythroblast proliferation and accelerates erythropoiesis recovery in anemia. Nature Medicine, 2011, 17, 1456-1465.	30.7	62
92	Genomic deletion of the whole IgH 3′ regulatory region (hs3a, hs1,2, hs3b, and hs4) dramatically affects class switch recombination and Ig secretion to all isotypes. Blood, 2010, 116, 1895-1898.	1.4	127
93	The IgH 3′ regulatory region and its implication in lymphomagenesis. European Journal of Immunology, 2010, 40, 3306-3311.	2.9	20
94	A myeloma translocation-like model associating CCND1 with the immunoglobulin heavy-chain locus 3′ enhancers does not promote by itself B-cell malignancies. Leukemia Research, 2010, 34, 1043-1051.	0.8	16
95	Premature replacement of μ with α immunoglobulin chains impairs lymphopoiesis and mucosal homing but promotes plasma cell maturation. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 3064-3069.	7.1	56
96	In Vivo Redundant Function of the 3′ <i>IgH</i> Regulatory Element HS3b in the Mouse. Journal of Immunology, 2010, 184, 3710-3717.	0.8	35
97	Multiple RNA Surveillance Mechanisms Cooperate to Reduce the Amount of Nonfunctional Igκ Transcripts. Journal of Immunology, 2010, 184, 5009-5017.	0.8	35
98	Crystal-storing histiocytosis with renal Fanconi syndrome: pathological and molecular characteristics compared with classical myeloma-associated Fanconi syndrome. Nephrology Dialysis Transplantation, 2010, 25, 2982-2990.	0.7	74
99	Ig Synthesis and Class Switching Do Not Require the Presence of the hs4 Enhancer in the 3′ IgH Regulatory Region. Journal of Immunology, 2009, 182, 6926-6932.	0.8	38
100	Uncoupling between Ig somatic hypermutation and oncogene mutation in mouse lymphoma. Biochimica Et Biophysica Acta - Molecular Cell Research, 2009, 1793, 418-426.	4.1	6
101	Long-range oncogenic activation of Igh–c-myc translocations by the Igh 3′ regulatory region. Nature, 2009, 462, 803-807.	27.8	79
102	Genetic background modulates susceptibility to oncogen-driven proliferation and lymphoma occurrence in mice carrying a deregulated c-myc transgene. Leukemia Research, 2009, 33, e203-e206.	0.8	5
103	Évaluation de la cytomètrie en flux par rapport aux tests de provocation en simple insu pour le diagnostic de l'allergie alimentaire chez l'enfant. Revue Francaise D'allergologie, 2009, 49, 454-461.	0.2	2
104	Splenic marginal zone lymphomas and lymphoplasmacytic lymphomas originate from B-cell compartments with two different antigen-exposure histories. Leukemia, 2008, 22, 1621-1624.	7.2	6
105	The 3′ IgH Locus Control Region Is Sufficient to Deregulate a c-myc Transgene and Promote Mature B Cell Malignancies with a Predominant Burkitt-Like Phenotype. Journal of Immunology, 2007, 179, 6033-6042.	0.8	57
106	Chapter 12 Renal Disease in Cryoglobulinemic Vasculitis. Handbook of Systemic Autoimmune Diseases, 2007, 7, 215-239.	0.1	2
107	High-Dose Melphalan versus Melphalan plus Dexamethasone for AL Amyloidosis. New England Journal of Medicine, 2007, 357, 1083-1093.	27.0	473
108	S-S Synapsis during Class Switch Recombination Is Promoted by Distantly Located Transcriptional Flements and Activation-Induced Deaminase, Immunity, 2007, 27, 711-722	14.3	184

#	Article	IF	CITATIONS
109	Human platelets can activate peripheral blood B cells and increase production of immunoglobulins. Experimental Hematology, 2007, 35, 1376-1387.	0.4	97
110	Clinico-biological characteristics of flow cytometry applied to hypersensitivity to NSAIDs. Inflammation Research, 2007, 56, S63-S64.	4.0	4
111	Use of both CD63 up regulation and IgE down regulation for the flow cytometric analysis of allergen induced basophil activation. Definition of an activation index. Inflammation Research, 2007, 56, 291-296.	4.0	26
112	Role of the monoclonal chain V domain and reversibility of renal damage in a transgenic model of acquired Fanconi syndrome. Blood, 2006, 108, 536-543.	1.4	58
113	Polyclonal IgG4 hypergammaglobulinemia associated with plasmacytic lymphadenopathy, anemia and nephropathy. Annals of Hematology, 2006, 85, 833-840.	1.8	17
114	Analysis of IgE down regulation induced by basophil activation. Application to the diagnosis of muscle relaxant allergic hypersensitivity by flow cytometry. Inflammation Research, 2006, 55, S21-S22.	4.0	8
115	Interallelic class switch recombination can reverse allelic exclusion and allowtrans-complementation of an IgH locus switching defect. European Journal of Immunology, 2006, 36, 2181-2191.	2.9	13
116	Germ line transcription in mice bearing neor gene downstream of IÂ3 exon in the Ig heavy chain locus. International Immunology, 2006, 18, 581-589.	4.0	3
117	Light chain inclusion permits terminal B cell differentiation and does not necessarily result in autoreactivity. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103, 7747-7752.	7.1	16
118	The chicken β-globin HS4 insulator is not a silver bullet to obtain copy-number dependent expression of transgenes in stable B cell transfectants. Immunology Letters, 2005, 96, 303-304.	2.5	16
119	Fanconi's syndrome induced by a monoclonal Vîº3 light chain in Waldenström's macroglobulinemia. American Journal of Kidney Diseases, 2005, 45, 749-757.	1.9	58
120	The 5′HS4 insulator element is an efficient tool to analyse the transient expression of an Eμ-GFP vector in a transgenic mouse model. Transgenic Research, 2005, 14, 361-364.	2.4	11
121	Interallelic Class Switch Recombination Contributes Significantly to Class Switching in Mouse B Cells. Journal of Immunology, 2005, 174, 6176-6183.	0.8	27
122	Regulation of Class Switch Recombination. , 2004, , 289-305.		9
123	RNA surveillance down-regulates expression of nonfunctional alleles and detects premature termination within the last exon. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101, 7375-7380.	7.1	22
124	Immunologic basis for the rare occurrence of true nonsecretory plasma cell dyscrasias. Journal of Leukocyte Biology, 2004, 76, 528-536.	3.3	25
125	Transcription-Dependent Somatic Hypermutation Occurs at Similar Levels on Functional and Nonfunctional Rearranged IgH Alleles. Journal of Immunology, 2004, 173, 1842-1848.	0.8	23
126	Induction of somatic hypermutation by antigen-specific B cell receptors in the human BL2 cell line. European Journal of Immunology, 2004, 34, 1637-1645.	2.9	0

#	Article	IF	CITATIONS
127	The polymorphism of the locus control region lying downstream the human IgH locus is restricted to hs1,2 but not to hs3 and hs4 enhancers. Immunology Letters, 2004, 94, 77-81.	2.5	13
128	Immunoglobulin class-switch recombination in mice devoid of any Sμ tandem repeat. Blood, 2004, 103, 3828-3836.	1.4	68
129	Polyclonal IgG4 Hypergammaglobulinemia Associated with Lymphadenopathy and Renal Disease: A Novel Syndrome Blood, 2004, 104, 3841-3841.	1.4	0
130	A monoclonal Vκl light chain responsible for incomplete proximal trubulopathy. American Journal of Kidney Diseases, 2003, 41, 497-504.	1.9	36
131	Combination of 3′ and 5′ IgH regulatory elements mimics the B-specific endogenous expression pattern of IgH genes from pro-B cells to mature B cells in a transgenic mouse model. Biochimica Et Biophysica Acta - Molecular Cell Research, 2003, 1642, 181-190.	4.1	11
132	Germ-line transcription occurs on both the functional and the non-functional alleles of immunoglobulin constant heavy chain genes. European Journal of Immunology, 2003, 33, 2108-2113.	2.9	28
133	Effect of the Eμ IgH enhancer on expression of a GFP reporter gene in transfected B cells and transgenic mice. Immunology Letters, 2003, 86, 77-83.	2.5	4
134	The β-globin HS4 insulator confers copy-number dependent expression of IgH regulatory elements in stable B cell transfectants. Immunology Letters, 2003, 89, 119-123.	2.5	6
135	Nuclear factors, hs1,2 enhancer and IgA nephropathy. Kidney International, 2003, 63, 767.	5.2	2
136	Insulators to improve expression of a 3′IgH LCR-driven reporter gene in transgenic mouse models. Biochemical and Biophysical Research Communications, 2003, 307, 466-471.	2.1	33
137	The immunoglobulin heavy-chain locus hs3b and hs4 3′ enhancers are dispensable for VDJ assembly and somatic hypermutation. Blood, 2003, 102, 1421-1427.	1.4	50
138	B Cell Development Arrest Upon Insertion of a <i>neo</i> Gene Between JH and Eμ: Promoter Competition Results in Transcriptional Silencing of Germline JH and Complete V(D)J Rearrangements. Journal of Immunology, 2002, 169, 6875-6882.	0.8	21
139	Light chain myeloma plasma cells induce a strong cell-mediated immune response mainly directed against the monoclonal light chain determinants in a murine experimental model. Cancer Immunology, Immunotherapy, 2002, 51, 229-234.	4.2	8
140	Paraoxonase 1 192/55 Gene Polymorphisms in Alzheimer's Disease. Annals of the New York Academy of Sciences, 2002, 977, 239-244.	3.8	51
141	Characterization of the murine gene for subunit VIIaL of cytochrome c oxidase. Comptes Rendus De L'Académie Des Sciences Série 3, Sciences De La Vie, 2001, 324, 1117-1123.	0.8	3
142	Localization of the 3′ IgH Locus Elements that Effect Long-Distance Regulation of Class Switch Recombination. Immunity, 2001, 15, 187-199.	14.3	191
143	Polymorphism of the human alpha1 immunoglobulin gene 3' enhancer hs1,2 and its relation to gene expression. Immunology, 2001, 103, 35-40.	4.4	32
144	The 3′ IgH regulatory region: A complex structure in a search for a function. Advances in Immunology, 2000, 75, 317-345.	2.2	90

#	Article	IF	CITATIONS
145	Alleles of the α1 immunoglobulin gene 3′ enhancer control evolution of IgA nephropathy toward renal failure. Kidney International, 2000, 58, 966-971.	5.2	36
146	Deregulated plateletâ€activating factor levels and acetylhydrolase activity in patients with idiopathic IgA nephropathy. Nephrology Dialysis Transplantation, 2000, 15, 1344-1347.	0.7	11
147	Optimisation of HLA-B27 Testing by Association of Flow Cytometry and DNA Typing. Clinical Rheumatology, 1999, 18, 23-27.	2.2	8
148	Modification of HLA expression on peripheral lymphocytes and monocytes during ageing. Mechanisms of Ageing and Development, 1998, 105, 209-220.	4.6	22
149	Synergies between regulatory elements of the immunoglobulin heavy chain locus and its palindromic 3 ′ locus control region. European Journal of Immunology, 1998, 28, 3048-3056.	2.9	49
150	Insertion of the IgH locus 3′ regulatory palindrome in expression vectors warrants sure and efficient expression in stable B cell transfectants. Gene, 1998, 222, 279-285.	2.2	17
151	Complete Primary Sequences of Two λ Immunoglobulin Light Chains in Myelomas with Nonamyloid (Randall-Type) Light Chain Deposition Disease. American Journal of Pathology, 1998, 153, 313-318.	3.8	23
152	Membrane isoforms of human immunoglobulins of the A1 and A2 isotypes: structural and functional study. Immunology, 1997, 90, 330-336.	4.4	10
153	Identification of a homolog of the Cα3′/hs3 enhancer and of an allelic variant of the 3′IgH/hs1,2 enhancer downstream the human immunoglobulin α1 gene. European Journal of Immunology, 1997, 27, 2981-2985.	2.9	45
154	Regulatory elements of the mb-1 gene encoding the Ig-α component of the human B-cell antigen receptor. Molecular Immunology, 1996, 33, 1277-1286.	2.2	10
155	The Igκ 3′ Enhancer Influences the Ratio of Igκ versus Igλ B Lymphocytes. Immunity, 1996, 5, 241-252.	14.3	158
156	Palindromic structure of the IgH 3′locus control region. Nature Genetics, 1996, 14, 15-16.	21.4	66
157	Structure of Abnormal Heavy Chains in Human Heavy-chain-deposition Disease. FEBS Journal, 1995, 229, 54-60.	0.2	13
158	Structure of Abnormal Heavy Chains in Human Heavy-chain-deposition Disease. FEBS Journal, 1995, 229, 54-60.	0.2	42
159	Monoclonal immunoglobulin deposition disease: A review of immunoglobulin chain alterations. International Journal of Immunopharmacology, 1994, 16, 425-431.	1.1	22
160	A class switch control region at the 3′ end of the immunoglobulin heavy chain locus. Cell, 1994, 77, 737-747.	28.9	255
161	The effect of intron sequences on expression levels of Ig cDNAs. Gene, 1994, 150, 387-390.	2.2	6
162	Monoclonal immunoglobulin deposition disease (Randall type). Relationship with structural abnormalities of immunoglobulin chains. Kidney International, 1994, 46, 965-972.	5.2	123

#	Article	IF	CITATIONS
163	A human myeloma IgA with a hybrid heavy chain resulting from putative somatic gene conversion. European Journal of Immunology, 1993, 23, 364-368.	2.9	6
164	Exon skipping without splice site mutation accounting for abnormal immunoglobulin chains in nonsecretory human myeloma. European Journal of Immunology, 1993, 23, 1289-1293.	2.9	26
165	Complete variable region deletion in Aα heavy chain disease protein (roul). Correlation with light chain secretion. Leukemia Research, 1993, 17, 527-532.	0.8	10
166	Heavy-Chain Deposition Disease. New England Journal of Medicine, 1993, 329, 1389-1393.	27.0	119
167	Cellular localization of hydroxyindole-O-methyltransferase mRNA in the chicken pineal gland. NeuroReport, 1993, 4, 803-806.	1.2	8
168	Structure of a monoclonal kappa chain of the V kappa IV subgroup in the kidney and plasma cells in light chain deposition disease Journal of Clinical Investigation, 1991, 87, 2186-2190.	8.2	84
169	Immunoglobulin light chain transcripts with altered V regions in Burkitt's lymphoma cell lines producing short μ chains. European Journal of Immunology, 1990, 20, 1905-1910.	2.9	11
170	Production of an abnormal μ chain with a shortened VHIV subgroup variable region in a burkitt's lymphoma cell line. Molecular Immunology, 1990, 27, 929-934.	2.2	10
171	Nonsecretory α-Chain Disease with Immunoproliferative Smallintestinal Disease. New England Journal of Medicine, 1989, 320, 1534-1539.	27.0	38
172	BURKITT'S LYMPHOMA CELL LINES PRODUCING TRUNCATED P IMMUNOGLOBULIN HEAVY CHAINS LACKING PART OF THE VARIABLE REGION. European Journal of Immunology, 1988, 18, 1485-1490.	2.9	14
173	Diffuse small intestinal lymphoid infiltration in nonimmunodeficient adults from Western Europe. Gastroenterology, 1988, 95, 470-477.	1.3	15
174	Major histocompatibility complex restriction of tetanus toxoid-specific human T lymphocyte clones. European Journal of Immunology, 1984, 14, 1131-1136.	2.9	10
175	Mass Cytometry and Artificial Intelligence Define CD169 as a Marker of SARS-CoV2-Induced Acute Respiratory Distress Syndrome. SSRN Electronic Journal, 0, , .	0.4	0