
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6471378/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Considering demographics of other involved drivers in predicting the highest driver injury severity in multi-vehicle crashes on rural two-lane roads in California. Journal of Transportation Safety and Security, 2023, 15, 43-58.	1.6	8
2	Head-on Crashes. , 2021, , 311-315.		0
3	Evaluation of hot spot identification methods for municipal roads. Journal of Transportation Safety and Security, 2020, 12, 463-481.	1.6	9
4	Identifying association between pedestrian safety interventions and street-crossing behavior considering demographics and traffic context. Journal of Transportation Safety and Security, 2020, 12, 441-462.	1.6	7
5	Incorporating Demographic Proportions into Crash Count Models by Quasi-Induced Exposure Method. Transportation Research Record, 2020, 2674, 548-560.	1.9	10
6	An Application of the Tau-Path Method in Highway Safety. Journal of the Indian Society for Probability and Statistics, 2019, 20, 117-139.	0.8	1
7	Chapter 15. Crash Severity Methods. Transport and Sustainability, 2018, , 325-350.	0.4	Ο
8	GAP ACCEPTANCE FOR LEFT TURNS FROM THE MAJOR ROAD AT UNSIGNALIZED INTERSECTIONS. Transport, 2017, 32, 252-261.	1.2	7
9	Predicting local road crashes using socioeconomic and land cover data. Journal of Transportation Safety and Security, 2017, 9, 301-318.	1.6	9
10	A study of pedestrian compliance with traffic signals for exclusive and concurrent phasing. Accident Analysis and Prevention, 2017, 98, 157-166.	5.7	15
11	Multivariate poisson lognormal modeling of crashes by type and severity on rural two lane highways. Accident Analysis and Prevention, 2017, 99, 6-19.	5.7	58
12	Fast Bayesian inference for modeling multivariate crash counts. Analytic Methods in Accident Research, 2016, 9, 44-53.	8.2	43
13	Copula-Based Joint Model of Injury Severity and Vehicle Damage in Two-Vehicle Crashes. Transportation Research Record, 2015, 2514, 158-166.	1.9	29
14	Left-Turn Gap Acceptance Behavior of Elderly Drivers at Unsignalized Intersections. Journal of Transportation Safety and Security, 2015, 7, 324-344.	1.6	9
15	Safety effects of exclusive and concurrent signal phasing for pedestrian crossing. Accident Analysis and Prevention, 2015, 83, 26-36.	5.7	28
16	Explaining Pedestrian Safety Experience at Urban and Suburban Street Crossings Considering Observed Conflicts and Pedestrian Counts. Journal of Transportation Safety and Security, 2014, 6, 335-355.	1.6	13
17	Developing Safety Performance Function for Freeways by considering Interactions between Speed Limit and Geometric Variables. Transportation Research Record, 2014, 2435, 72-81.	1.9	16
18	Dynamic compositional modeling of pedestrian crash counts on urban roads in Connecticut. Accident Analysis and Prevention, 2014, 64, 78-85.	5.7	17

#	Article	IF	CITATIONS
19	Analysis of driver and passenger crash injury severity using partial proportional odds models. Accident Analysis and Prevention, 2013, 58, 53-58.	5.7	46
20	Temporal modeling of highway crash counts for senior and non-senior drivers. Accident Analysis and Prevention, 2013, 50, 1003-1013.	5.7	17
21	Smart phone assisted city-scale wireless sensor network deployment for transportation system monitoring. , 2012, , .		2
22	Motor Vehicle Speeds: Recommendations for Urban Sustainability. Transportation Research Record, 2012, 2301, 1-8.	1.9	5
23	A game theory approach to identify alternative regulatory frameworks for hazardous materials routing. , 2012, , .		4
24	A Statistical Analysis of the Effect of Wet-Pavement Friction on Highway Traffic Safety. Journal of Transportation Safety and Security, 2012, 4, 116-136.	1.6	21
25	Game theoretic vulnerability analysis for the optimal defense of high speed rail. , 2012, , .		3
26	Long-Term Safety Trends as a Function of Vehicle Ownership in 26 Countries. Transportation Research Record, 2012, 2280, 154-161.	1.9	18
27	VDPA: A WSN deployment and analysis tool for road network security. , 2012, , .		Ο
28	Modeling attacker-technology system interaction in transportation networks: P ² 1 ³ -model. , 2011, , .		1
29	Integrating equilibrium assignment in game-theoretic approach to measure many-to-many transportation network vulnerability. , 2011, , .		6
30	Safety Effects of Exclusive Left-Turn Lanes at Unsignalized Intersections and Driveways. Journal of Transportation Safety and Security, 2010, 2, 221-238.	1.6	9
31	Differences in the Performance of Safety Performance Functions Estimated for Total Crash Count and for Crash Count by Crash Type. Transportation Research Record, 2009, 2102, 115-123.	1.9	22
32	Predicting Segment-Intersection Crashes with Land Development Data. Transportation Research Record, 2009, 2102, 9-17.	1.9	12
33	Vehicle Time Spent in Following. Transportation Research Record, 2008, 2083, 162-169.	1.9	5
34	Crash Prediction Models for Intersections on Rural Multilane Highways. Transportation Research Record, 2007, 2019, 91-98.	1.9	43
35	Further notes on the application of zero-inflated models in highway safety. Accident Analysis and Prevention, 2007, 39, 53-57.	5.7	177
36	Decision Support System for Predicting Benefits of Left-Turn Lanes at Unsignalized Intersections. Transportation Research Record, 2007, 2023, 28-36.	1.9	4

#	Article	IF	CITATIONS
37	Analysis of Factors Affecting the Severity of Head-On Crashes. Transportation Research Record, 2006, 1953, 137-146.	1.9	19
38	Bayesian estimation of hourly exposure functions by crash type and time of day. Accident Analysis and Prevention, 2006, 38, 1071-1080.	5.7	42
39	Poisson, Poisson-gamma and zero-inflated regression models of motor vehicle crashes: balancing statistical fit and theory. Accident Analysis and Prevention, 2005, 37, 35-46.	5.7	601
40	Effects of Geometric Characteristics on Head-On Crash Incidence on Two-Lane Roads in Connecticut. Transportation Research Record, 2005, 1908, 159-164.	1.9	30
41	Evaluation of Safety Benefits and Potential Crash Migration Due to Shoulder Rumble Strip Installation on Connecticut Freeways. Transportation Research Record, 2005, 1908, 104-113.	1.9	4
42	Hierarchical Bayesian Estimation of Safety Performance Functions for Two-Lane Highways Using Markov Chain Monte Carlo Modeling. Journal of Transportation Engineering, 2005, 131, 345-351.	0.9	61
43	Evaluation of Safety Benefits and Potential Crash Migration Due to Shoulder Rumble Strip Installation on Connecticut Freeways. Transportation Research Record, 2005, 1908, 104-113.	1.9	8
44	Effects of Geometric Characteristics on Head-On Crash Incidence on Two-Lane Roads in Connecticut. Transportation Research Record, 2005, 1908, 159-164.	1.9	40
45	Selecting exposure measures in crash rate prediction for two-lane highway segments. Accident Analysis and Prevention, 2004, 36, 183-191.	5.7	171
46	New Approach for Including Traffic Volumes in Crash Rate Analysis and Forecasting. Transportation Research Record, 2004, 1897, 134-141.	1.9	28
47	Factors influencing injury severity of motor vehicle–crossing pedestrian crashes in rural Connecticut. Accident Analysis and Prevention, 2003, 35, 369-379.	5.7	222
48	Case-Based Reasoning for Assessing Intelligent Transportation Systems Benefits. Computer-Aided Civil and Infrastructure Engineering, 2003, 18, 173-183.	9.8	12
49	Roadway safety in rural and small urbanized areas. Accident Analysis and Prevention, 2001, 33, 485-498.	5.7	76
50	Safety Benefits of Intersection Approach Realignment on Rural Two-Lane Highways. Transportation Research Record, 2001, 1758, 21-29.	1.9	5
51	Regional and Area-Type Modeling of Peak Spreading on Connecticut Freeways. Journal of Transportation Engineering, 2001, 127, 223-229.	0.9	4
52	Estimating Pedestrian Exposure Prediction Model in Rural Areas. Transportation Research Record, 2001, 1773, 89-96.	1.9	33
53	Explaining two-lane highway crash rates using land use and hourly exposure. Accident Analysis and Prevention, 2000, 32, 787-795.	5.7	137
54	Freeway Link Traffic Volumes by Time of Day Estimation Procedures. , 2000, , 519.		0

#	Article	IF	CITATIONS
55	Differences in causality factors for single and multi-vehicle crashes on two-lane roads. Accident Analysis and Prevention, 1999, 31, 695-704.	5.7	68
56	Data Fusion of Fixed Detector and Probe Vehicle Data for Incident Detection. Computer-Aided Civil and Infrastructure Engineering, 1998, 13, 329-337.	9.8	23
57	Structural Damage Detection Using Artificial Neural Networks. Journal of Infrastructure Systems, 1998, 4, 93-101.	1.8	93
58	Incident Detection Using Vehicle-Based and Fixed-Location Surveillance. Journal of Transportation Engineering, 1997, 123, 209-215.	0.9	5
59	Neural network representations for arterial street incident detection data fusion. Transportation Research Part C: Emerging Technologies, 1997, 5, 245-254.	7.6	23
60	Estimating Intersection Approach Delay Using 1985 and 1994 Highway Capacity Manual Procedures. Transportation Research Record, 1996, 1555, 23-32.	1.9	1
61	Estimating Intersection Approach Delay Using 1985 and 1994 <i>Highway Capacity Manual</i> Procedures. Transportation Research Record, 1996, 1555, 23-32.	1.9	3
62	<title>Vehicle-based versus fixed-location measurements for traffic surveillance in IVHS</title> . , 1995, , .		0